

For a device that can fit in the palm of your hand, the Raspberry Pi has had
a pretty colossal impact since its launch in 2012. In just a few short years it’s

changed the way computer science is taught in schools, it’s been used in some
amazing projects at Raspberry Jam events across the world, and it’s inspired
a new generation of coders to create and craft new gadgets. No matter your

age or experience level, there’s a Pi project for you, and in Practical Raspberry Pi
Projects we’re giving you everything you need to fire up your imagination and
unleash your creativity. From hardware-based projects like building a Raspberry

Pi-controlled car, through software projects like coding a simple synth, all the way
to advanced electronics projects that will see you transforming your Pi into a retro
NES, alarm clock robot or quadcopter, we’ve got plenty here to keep you busy. All

you need is your favourite $35 computer and a passion for making things!

Welcome to

ProJects
Raspberry Pi

Practical

Imagine Publishing Ltd

Richmond House

33 Richmond Hill

Bournemouth

Dorset BH2 6EZ

 +44 (0) 1202 586200

Website: www.imagine-publishing.co.uk

Twitter: @Books_Imagine

Facebook: www.facebook.com/ImagineBookazines

Publishing Director
Aaron Asadi

Head of Design
Ross Andrews

Editor In Chief
Jon White

Production Editor
Hannah Westlake

Senior Art Editor
Greg Whitaker

Assistant Designer
Steve Dacombe

Photographer
James Sheppard

Printed by
William Gibbons, 26 Planetary Road, Willenhall, West Midlands, WV13 3XT

Distributed in the UK, Eire & the Rest of the World by
Marketforce, 5 Churchill Place, Canary Wharf, London, E14 5HU

Tel 0203 787 9060 www.marketforce.co.uk

Distributed in Australia by
Gordon & Gotch Australia Pty Ltd, 26 Rodborough Road, Frenchs Forest, NSW, 2086 Australia

Tel +61 2 9972 8800, www.gordongotch.com.au

Disclaimer

The publisher cannot accept responsibility for any unsolicited material lost or damaged in the
post. All text and layout is the copyright of Imagine Publishing Ltd. Nothing in this bookazine may
be reproduced in whole or part without the written permission of the publisher. All copyrights are

recognised and used specifically for the purpose of criticism and review. Although the bookazine has
endeavoured to ensure all information is correct at time of print, prices and availability may change.

This bookazine is fully independent and not affiliated in any way with the companies mentioned herein.

Raspberry Pi is a trademark of The Raspberry Pi Foundation

Practical Raspberry Pi Projects Second Edition © 2016 Imagine Publishing Ltd

bookazine series

Part of the

ProJects
Raspberry Pi

Practical

7

72 Supercharge your Pi
Get the most out of your Raspberry Pi

Software

76 Create your own digital
assistant, part 1
Tell your computer what to do

78 Create your own digital
assistant, part 2
Continue this project by decoding audio

80 Create your own digital
assistant, part 3
Run the commands you’re giving your Pi

82 Run science experiments
on the Expeyes kit
Make use of this digital oscilloscope

86 Monitor CPU temperature
with Dizmo
Access the Internet of Things

90 Talking on the I2C bus
Talk to the world with the I2C bus

92 Print wirelessly with your
Raspberry Pi
Breathe new life into an old printer

94 Remotely control your
Raspberry Pi
Employ your Pi as a media centre

96 Turn your Pi into a motion
sensor with SimpleCV
Implement facial recognition into your Pi

98 Code a simple synthesiser
Write a simple synthesiser using Python

106 Build a Raspberry Pi
car computer
Make your own touchscreen navigator

Electronics

114 How I made: Ras Pi

Terrarium controller
Investigate an environmental control system

116 Make a Ras Pi sampler
Build your own looping drum machine

120 Transform your Pi into a
micro oscilloscope
Transform your RasPi with BitScope Micro

124 How I made: Pi Glove 2
Control lights, send texts and more

126 Assemble a Minecraft
power move glove
Enhance your game with this cool hack

130 Build a complex
LED matrix
Program your own light system

134 Add gesture control to
your Raspberry Pi
Easily add touch controls to your projects

138 How I made: Joytone
A new type of electronic keyboard

140 Build a Connect 4 robot
 Try your hand at outsmarting a robot

142 Program a quadcopter
Take to the skies with this gadget

148 20 Raspberry Pi
hacking projects
Repurpose everyday items

Still haven’t done anything with your Raspberry Pi? Follow
along with our expert advice and kick-start your own amazing

Raspberry Pi projects

10 PRACTICAL RASPBERRY PI PROJECTS

8

10 PRACTICAL RASPBERRY PI PROJECTS

Build a RasPi
web serverMake a stop

motion animation

Create a voice
synthesiser

Code your own
Twitter bot

From our time covering this incredible credit card-

sized computer, it’s become clear there are two types

of Raspberry Pi owners: those that use theirs and those

that don’t. Whether it’s fear of the unknown, a lack of time

or inspiration, when we ask people what they do with their

Pi we’ll often hear that it’s still in the box. If that’s you, then

you’re in the right place. In this feature we’ve handcrafted ten

Raspberry Pi projects practically anyone can enjoy.

These aren’t just a random selection of side-projects, though.

These are practical ideas designed to help kick-start bigger

and better things. Knowledge gained from one project can also

be applied to another to create something completely new. For

example, you could combine our Twitter and three-colour lamp

tutorials to create a desk lamp that changes colour as your

Twitter account is retweeted. You could go on to make Pong in

Minecraft-Pi or use a button attached to Scratch to take photos

with your Raspberry Pi camera module. The list goes on.

All these projects are open source, so you’re encouraged to

tweak and develop them into something entirely new. If you

share your tweaks and changes with the community, you’re sure

to start benefi tting from doing things the open source way…

10 PRACTICAL RASPBERRY PI PROJECTS

Program your own melodies using Sonic Pi and create
musical cues or robot beeps

What you’ll need
 Portable speakers

 Sonic Pi
www.cl.cam.ac.uk/projects/
raspberrypi/sonicpi/teaching.html

Make music with
the Raspberry Pi

One of the major features of Scratch is

its ability to teach the fundamentals

of coding to kids and people with no

computing background. For kids, its

especially appealing due to the way it

allows them to create videogames to

interact with as part of their learning. In

this kind of vein then, Sonic Pi teaches

people to code using music. With a

simple language that utilises basic logic

steps but in a more advanced way than

Scratch, it can either be used as a next

step for avid coders, or as a way to create

music for an Internet of Things or a robot.

01 Getting Sonic Pi
If you’ve installed the latest version of Raspbian, Sonic

Pi will be included by default. If you’re still using a slightly older

version, then you’ll need to install it via the repos. Do this with:

 $ sudo apt-get install sonic-pi

Sonic Pi is a great way

to learn basic coding

principles and have fun

10

11

MAKE MUSIC WITH THE RASPBERRY PI

1. How
to code
The coding
style of Sonic Pi
uses concepts
from standard
programming
languages – if
statements, loops,
threads etc. Whereas
Scratch teaches this
logic, Sonic Pi teaches
their structure.

2. Robotic
voice
Employ Sonic Pi
to create context-
sensitive chips, chirps
and beeps and use
it to give a familiar
voice while it tootles
around.

3. MIDI
The Musical
Instrument Digital
Interface is a
standard for digital
music, and the
numbers and tones
used in Sonic Pi make
use of this.

You’ll
learn...

02 Starting with Sonic Pi
Sonic Pi is located in the Education category in the

menus. Open it up and you’ll be presented with something that

looks like an IDE. The pane on the left allows you to enter the code

for your project, with proper syntax highlighting for its own style

of language. When running, an info pane details exactly what’s

being played via Sonic Pi – and any errors are listed in their own

pane as well, for reference.

03 Your first note
Our first thing to try on Sonic Pi is simply being able

to play a note. Sonic Pi has a few defaults preset, so we can get

started with:

 play 50

Press the Play button and the output window will show you what’s

being played. The pretty_bell sound is the default tone for Sonic

Pi’s output, and 50 determines the pitch and tone of the sound.

04 Set the beat
For any piece of music, you’ll want to set the tempo. We

can start by putting:

 with_tempo 200

…at the start of our code. We can test it out by creating a string of

midi notes using play_pattern:

 play_pattern [40,25,45,25,25,50,50]

This will play pretty_bell notes at these tones at the tempo we’ve

set. You can create longer and shorter strings, and also change

the way they play.

05 Advance your melody
We can start making more complex melodies by using

more of Sonic Pi’s functions. You can change the note type by

using with_synth, reverse a pattern, and even create a finite loop

with the x.times function; do and end signify the start and end

of the loop. Everything is played in sequence before repeating,

much like an if or while loop in normal code.

06 Playing a concert
Using the in_thread function, we can create another

thread for the Sonic Pi instance and have several lines of musical

code play at once instead of in sequence. We’ve made it create

a series of notes in a random sequence, and have them play

alongside extra notes created by the position and velocity of the

mouse using the play_pad function.

with_tempo 200

play_pattern [40,25,45,25,25,50,50]

2.times do

 with_synth “beep”

 play_pattern [40,25,45,25,25,50,50]

 play_pattern [40,25,45,25,25,50,50].reverse

end

play_pad “saws”, 3

in_thread do

 with_synth “fm”

 6.times do

 if rand < 0.5

 play 30

 else

 play 50

 end

 sleep 2

 end

end

2.times do

 play_synth “pretty_bell”

 play_pattern [40,25,45,25,25,50,50]

 play_pattern [40,25,45,25,25,50,50].reverse

end

Full code listing

 We can start making more
complex melodies by using more
of Sonic Pi’s functions

12

10 PRACTICAL RASPBERRY PI PROJECTS

Add the power of speech to your Raspberry Pi
projects with the versatile eSpeak Python library

It’s easier to make your Raspberry Pi talk

than you might think, thanks to eSpeak

Raspberry Pi
voice synthesizer

We’ve shown in previous issues how

the Raspberry Pi can be used to

power robots, and as a tiny computer

it can also be the centre of an Internet

of Things in your house or offi ce.

For these reasons and more, using

the Raspberry Pi for text-to-voice

commands could be just what you’re

looking for. Due to the Debian base

of Raspbian, the powerful eSpeak

library is easily available for anyone

looking to make use of it. There’s also a

module that allows you to use eSpeak

in Python, going beyond the standard

command-line prompts so you can

perform automation tasks.

01 Everything you’ll need
We’ll install everything we plan to use in this tutorial at

once. This includes the eSpeak library and the Python modules

we need to show it off. Open the terminal and install with:

 $ sudo apt-get install espeak python-espeak python-tk

What you’ll need
 Portable USB speakers

 python-espeak module

eSpeak

Raspbian (latest image)

13

RASPBERRY PI VOICE SYNTHESIZER

from espeak import espeak

from Tkinter import *

from datetime import datetime

def hello_world():

 espeak.synth(“Hello World”)

def time_now():

 t = datetime.now().strftime(“%k %M”)

 espeak.synth(“The time is %s”%t)

def read_text():

 text_to_read = input_text.get()

 espeak.synth(text_to_read)

root = Tk()

root.title(“Voice box”)

input_text = StringVar()

box = Frame(root, height = 200, width = 500)

box.pack_propagate(0)

box.pack(padx = 5, pady = 5)

Label(box, text=”Enter text”).pack()

entry_text = Entry(box, exportselection = 0,

textvariable = input_text)

entry_text.pack()

entry_ready = Button(box, text = “Read this”,

command = read_text)

entry_ready.pack()

hello_button = Button(box, text = “Hello World”,

command = hello_world)

hello_button.pack()

time_button = Button(box, text = “What’s the

time?”, command = time_now)

time_button.pack()

root.mainloop()

Full code listing

02 Pi’s first words
The eSpeak library is pretty simple to use – to get it to

just say something, type in the terminal:

 $ espeak “[message]”

This will use the library’s defaults to read whatever is written in

the message, with decent clarity.

03 Say some more
You can change the way eSpeak will read text with a

number of different options, such as gender, read speed and

even the way it pronounces syllables. For example, writing the

command like so:

 $ espeak -ven+f3 -k5 -s150 “[message]”

…will turn the voice female, emphasise capital letters and make

the reading slower.

04 Taking command with Python
The most basic way to use eSpeak in Python is to use

subprocess to directly call a command-line function. Import

subprocess in a Python script, then use:

 subprocess.call([“espeak”, “[options 1]”, “[option

 2]”,...”[option n]”, “[message]”)

The message can be taken from a variable.

06 A voice synthesiser
Using the code listing, we’re creating a simple interface

with Tkinter with some predetermined voice buttons and a

custom entry method. We’re showing how the eSpeak module

can be manipulated to change its output. This can be used for

reading tweets or automated messages. Have fun!

05 The native tongue
The Python eSpeak module is quite simple to use to just

convert some text to speech. Try this sample code:

 from espeak import espeak

 espeak.synth(“[message]”)

You can then incorporate this into Python, like you would any

other module, for automation.

Import the
necessary eSspeak
and GUI modules, as
well as the module
to find out the time

Define the different
functions that the
interface will use,
including a simple
fixed message,
telling the time, and
a custom message

Create the basic
window with Tkinter
for your interface,
as well as creating
the variable for
text entry

The text entry
appends to the
variable we
created, and each
button calls a
specific function
that we defined
above in the code

You can change the way eSpeak
will read text with a number of
different options

Get the
code:
bit.ly/

14XbLOC

10 PRACTICAL RASPBERRY PI PROJECTS

Learn to program while playing one of the
greatest games ever made!

Program
Minecraft-Pi

Minecraft is probably the biggest game

on the planet right now. It’s available on

just about any format you can imagine,

from PCs to gaming consoles to mobile

phones. It should probably come as

no surprise that it’s also available on

the Raspberry Pi. While at fi rst glance

Minecraft-Pi is a simplifi ed version of the

Pocket Edition (designed for tablets and

smartphones), the Raspberry Pi edition

is very special, in that it’s the only version

of Minecraft to gives users access to its

API (application programming interface).

In this project we’re going to show you

how to set up Minecraft-Pi and confi gure

it so you can interact with Minecraft in a

way you’ve never done before. This small

project is just the tip of the iceberg…

01 Requirements
Minecraft-Pi requires you to be running Raspbian on

your Raspberry Pi, so if you’re not already running that, take a

trip to raspberrypi.org and get it setup. It also requires you have

X Window loaded too. Assuming you’re at the command prompt,

you just need to type startx to reach the desktop.

What you’ll need
 Raspbian (latest release)

 Minecraft-Pi tarball

 Keyboard & mouse

 Internet connection

Unlike all other
versions of Minecraft,
the Pi version
encourages you to
hack it

14

15

PROGRAM MINECRAFT-PI

02 Installation
Make sure you’re already in your

home folder and download the Minecraft-

Pi package with the following commands

in a terminal window:

 cd ~

 wget https://s3.amazonaws.com/

assets.minecraft.net/

 pi/minecraft-pi-0.1.1.tar.gz

To use it we need to decompress it. Copy

the following into the terminal window:

 tar -zxvf minecraft-pi-0.1.1.tar.gz

Now you can move into the newly

decompressed Minecraft-Pi directory

and try running the game for the first time:

 cd mcpi

 ./minecraft-pi

03 Playing Minecraft-Pi
Have a look around the game.

If you’re not familiar with Minecraft, you

control movement with the mouse and

the WASD keys. Numbers 1-8 select items

in your quickbar, the space bar makes you

jump and Shift makes you walk slowly (so

you don’t fall off edges). ‘E’ will open your

inventory and double-tapping the space

bar will also toggle your ability to fly.

04 Configuring the Python API
To take control of Minecraft with

the Python API, you next need to copy the

Python API folder from within the /mcpi

folder to a new location. In the terminal,

type the following:

 cp -r ~/mcpi/api/python/mcpi

~/ minecraft

In this folder, we want to create a

‘boilerplate’ Python document that

connects the API to the game. Write the

following into the terminal:

 cd ~/minecraft

 nano minecraft.py

With nano open, copy the following and

then save and exit with Ctrl+X, pressing

Y (for yes), then Enter to return to the

command prompt:

from mcpi.minecraft import

Minecraft

from mcpi import block

from mcpi.vec3 import Vec3

mc = Minecraft.create()

mc.postToChat(“Minecraft API

Connected”)

05 Testing your Python script
The short script you created

contains everything you need to get

started with hacking Minecraft-Pi in the

Python language. For it to work, you need

to have the game already running (and

be playing). To grab control of the mouse

06 Hide & Seek
As you can see from the code above, we’ve created a

game of Hide & Seek adapted from Martin O’Hanlon’s original

creation (which you can find on www.stuffaboutcode.com).

When you launch the script, you’ll be challenged to find a

hidden diamond in the fastest time possible. We’ve used it to

demonstrate some of the more accessible methods available in

the API. But there’s much more to it than this demonstrates. Stay

tuned – we’ll be back with more related guides in future issues.

!/usr/bin/env python

from mcpi.minecraft import Minecraft
from mcpi import block
from mcpi.vec3 import Vec3
from time import sleep, time
import random, math

mc = Minecraft.create() # make a connection to the game
playerPos = mc.player.getPos()

function to round players float position to integer position
def roundVec3(vec3):
 return Vec3(int(vec3.x), int(vec3.y), int(vec3.z))

function to quickly calc distance between points
def distanceBetweenPoints(point1, point2):
 xd = point2.x - point1.x
 yd = point2.y - point1.y
 zd = point2.z - point1.z
 return math.sqrt((xd*xd) + (yd*yd) + (zd*zd))

def random_block(): # create a block in a random position
 randomBlockPos = roundVec3(playerPos)
 randomBlockPos.x = random.randrange(randomBlockPos.x - 50, randomBlockPos.x + 50)
 randomBlockPos.y = random.randrange(randomBlockPos.y - 5, randomBlockPos.y + 5)
 randomBlockPos.z = random.randrange(randomBlockPos.z - 50, randomBlockPos.z + 50)
 return randomBlockPos

def main(): # the main loop of hide & seek
 global lastPlayerPos, playerPos
 seeking = True
 lastPlayerPos = playerPos

 randomBlockPos = random_block()
 mc.setBlock(randomBlockPos, block.DIAMOND_BLOCK)
 mc.postToChat(“A diamond has been hidden somewhere nearby!”)

 lastDistanceFromBlock = distanceBetweenPoints(randomBlockPos, lastPlayerPos)
 timeStarted = time()
 while seeking:
 # Get players position
 playerPos = mc.player.getPos()
 # Has the player moved
 if lastPlayerPos != playerPos:
 distanceFromBlock = distanceBetweenPoints(randomBlockPos, playerPos)

 if distanceFromBlock < 2:
 #found it!
 seeking = False
 else:
 if distanceFromBlock < lastDistanceFromBlock:
 mc.postToChat(“Warmer “ + str(int(distanceFromBlock)) + “ blocks away”)
 if distanceFromBlock > lastDistanceFromBlock:
 mc.postToChat(“Colder “ + str(int(distanceFromBlock)) + “ blocks away”)

 lastDistanceFromBlock = distanceFromBlock

 sleep(2)

 timeTaken = time() - timeStarted
 mc.postToChat(“Well done - “ + str(int(timeTaken)) + “ seconds to find the diamond”)

if __name__ == “__main__”:
 main()

while in-game, you can press Tab. Open a

fresh terminal window, navigate into your

minecraft folder and start the script with

the following commands:

 cd ~/minecraft

 python minecraft.py

You’ll see a message appear on screen to

let you know the API connected properly.

Now we know it works, let’s get coding!

Functional, &
fun coding
There’s nothing too
taxing about our
code. We’ve created
a couple of simple
functions (starting
with def) and used
if, else and while to
create the logic.

You’ll
learn...

Full code listing
Get the
code:
bit.ly/

1fo7MQ3

16

10 PRACTICAL RASPBERRY PI PROJECTS

Experiment with physical computing by using Scratch to
interact with buttons and lights on your Pi

Get interactive
with Scratch

Scratch is a very simple visual

programming language, commonly

used to teach basic programming

concepts to learners of any age. In

this project we’ll learn how to light up

an LED when a button is pressed in

Scratch, and then change a character’s

colour when a physical button is

pressed. With these techniques

you can make all manner of fun and

engaging projects, from musical

keyboards to controllers for your

Scratch games and animations.

01 Installing the required software
Log into the Raspbian system with the username Pi and

the password raspberry. Start the LXDE desktop environment

using the command startx. Then open LXTerminal and type the

following commands:

 wget http://liamfraser.co.uk/lud/install_scratchgpio3.sh

 chmod +x install_scratchgpio3.sh

 sudo bash install_scratchgpio3.sh

This will create a special version of Scratch on your desktop

called ScratchGPIO3. This is a normal version of Scratch

with a Python script that handles communications between

Scratch and the GPIO. ScratchGPIO was created by simplesi

(cymplecy.wordpress.com).

What you’ll need
 Breadboard

 LEDs

 Buttons

 Resistors

 Jumper wires

 ScratchGPIO3

Scratch can be used to do Internet
Of Things projects with a few tweaks

17

GET INTERACTIVE WITH SCRATCH

1. Simple
circuits
While these are very
simple circuits, you’ll
get a great feel of
how the Raspberry
Pi interfaces with
basic prototyping
kit. If you need to buy
the bits and pieces,
we recommend you
check out:
shop.pimoroni.com

2. Coding
principles
If you’re new to
programming,
Scratch is the
perfect place to
learn the same
programming
principles employed
by all programming
languages.

3. Physical
computing
There’s nothing more
magical than taking
code from your
computer screen
and turning it into a
real-life effect. Your
fi rst project might
just turn a light on
and off, but with that
skill banked, the sky
is the limit.

You’ll
learn...

02 Connecting the breadboard
Power off your Pi and disconnect the power cable. Get

your breadboard, an LED, a 330-ohm resistor and two GPIO

cables ready. You’ll want to connect the 3.3V pin (top-right pin,

closest to the SD card) to one end of the 330-ohm resistor, and

then connect the positive terminal of the LED (the longer leg is

positive) to the other end. The resistor is used to limit the amount

of current that can fl ow to the LED.

Then put the negative terminal of the LED into the negative

rail of the breadboard. Connect one of the GROUND pins (for

example, the third pin from the right on the bottom row of pins)

to the negative lane. Now connect the power to your Pi. The LED

should light up. If it doesn’t, then it’s likely that you’ve got it the

wrong way round, so disconnect the power, swap the legs around

and then try again.

03 Switching the LED on and off
At the moment, the LED is connected to a pin that

constantly provides 3.3V. This isn’t very useful if we want to be able

to turn it on and off, so let’s connect it to GPIO 17, which we can turn

on and off. GPIO 17 is the sixth pin from the right, on the top row of

pins. Power the Pi back on. We can turn the LED on by exporting

the GPIO pin, setting it to an output pin and then setting its value

to 1. Setting the value to 0 turns the LED back off:

 echo 17 > /sys/class/gpio/export

 echo out > /sys/class/gpio/gpio17/direction

 echo 1 > /sys/class/gpio/gpio17/value

 echo 0 > /sys/class/gpio/gpio17/value

uses pin numbers rather than GPIO numbers to identify pins.

The top-right pin (the 3.3V we first connected our LED to) is pin

number 1, the pin underneath that is pin number 2, and so on.

04 Controlling the LED from Scratch
Start the LXDE desktop environment and open

ScratchGPIO3. Go to the control section and create a simple script

that broadcasts pin11on when Sprite1 is clicked. Then click the

sprite. The LED should light up. Then add to the script to wait 1

second and then broadcast pin11off. If you click the sprite again,

the LED will come on for a second and then go off. ScratchGPIO3

05 Wiring up our push button
Power off the Pi again. This circuit is a little bit more

complicated than the LED one we created previously. The first

thing we need to do is connect 3.3V (the top-right pin we used to

test our LED) to the positive rail of the breadboard. Then we need

to connect a 10Kohm resistor to the positive rail, and the other end

to an empty track on the breadboard. Then on the same track, add

a wire that has one end connected to GPIO 4. This is two pins to the

right of GPIO 17. Then, on the same track again, connect one pin of

the push button. Finally, connect the other pin of the push button

to ground by adding a wire that is connected to the same negative

rails that ground is connected to.

When the button is not pressed, GPIO 4 will be receiving 3.3V.

However, when the button is pressed, the circuit to ground will be

completed and GPIO 4 will be receiving 0V (and have a value of 0),

because there is much less resistance on the path to ground.

We can see this in action by watching the pin’s value and then

pressing the button to make it change:

 echo 4 > /sys/class/gpio/export

 echo in > /sys/class/gpio/gpio4/direction

 watch -n 0.5 cat /sys/class/gpio/gpio4/value

06 Let there be light!
Boot up the Pi and start ScratchGPIO3 as before. Go

to the control section and add when green fl ag clicked, then

attach a forever loop, and inside that an if else statement. Go

to the operators section and add an if [] = [] operator to the

if statement. Then go to the sensing section and add a value

sensor to the left side of the equality statement, and set the

value to pin7. On the right side of the equality statement, enter

0. Broadcast pin11on if the sensor value is 0, and broadcast

pin11off otherwise. Click the green fl ag. If you push the button,

the LED will light up!

18

Use Google Coder to turn your Raspberry Pi into a tiny,
low-powered web server and web host

Build a Raspberry Pi
web server

We’re teaching you how to code in many

different ways on the Raspberry Pi, so

it only seems fi tting that we look at the

web too.

There’s a new way to use the web on

the Raspberry Pi as well: internet giant

Google has recently released Coder

specifi cally for the tiny computer. It’s a

Raspbian-based image that turns your Pi

into a web server and web development

kit. Accessible easily over a local network

and with support for jQuery out of the

box, it’s an easy and great way to further

your web development skills.

01 Get Google Coder
Head to the Google Coder website, and download the

compressed version of the image. Unpack it wherever you wish,

and install it using dd, like any other Raspberry Pi image:

 $ dd if=[path to]/raspi.img of=/dev/[path to SD

 card] bs=1M

What you’ll need
 Internet connectivity

 Web browser

 Google Coder
googlecreativelab.github.io/coder/
raspberrypi/sonicpi/teaching.html

10 PRACTICAL RASPBERRY PI PROJECTS

19

BUILD A RASPBERRY PI WEB SERVER

02 Plug in your Pi
For this tutorial, you’ll only need to connect a network

cable into the Pi. Pop in your newly written SD card, plug in the

power and wait a few moments. If you’ve got a display plugged in

anyway, you’ll notice a Raspbian startup sequence leading to the

command-line login screen.

03 Connect to Coder
Open up the browser on your main system, and go to

http://coder.local. You may have to manually accept the licence.

It will ask you to set up your password, and then you’ll be in and

ready to code.

04 Language of the web
Now it’s time to create your own app or website. Click

on the ‘+’ box next to the examples, give your app a name and

then click Create. You’ll be taken to the HTML section of the app.

Change the Hello World lines to:

<h1>This is a HTML header</h1>

<p>This is a new block of default text</p>

05 Styled to impress
Click on the CSS tab. This changes the look and style of

the webpage without having to make the changes each time in the

main code. You can change the background colour and font with:

 body {

 background-color: #000000;

 color: #ffffff;

 }

06 Querying your Java
The third tab allows you to edit the jQuery, making

the site more interactive. We can make it create a message on

click with:

 $(document).click(function() {

 alert(‘You clicked the website!’);

 }

);

HTML

<h1>Welcome to the internet...</h1>

<h2></h2>

<p>Linux User &

Developer</p>

<p>Reddit</p>

<p>The

Linux Foundation</p>

<p>Free Software

Foundation</p>

Java

var d = new Date;

 var hours = d.getHours();

 var mins = d.getMinutes();

 if (hours > 12) {

 var hour = (hours - 12);

 var ampm = “PM”;

 }

 else {

 var hour = hours;

 var ampm = “AM”;

 }

 if (hours == 12) {

 var ampm = “PM”;

 }

 if (mins > 9){

 var min = mins;

 }

 else {

 var min = “0” + mins;

 }

 var time = “The time is “ + hour + “:” + min

+ “ “ + ampm;

 $(“h2”).html(time);

Full code listing

Some simple HTML
code that can
point us to some
important websites.
The h2 tag is used
to display the time
thanks to Java

We’re calling the
current time using
jQuery in the JS
tab so that we can
ultimately display it
on the webpage

We’re going to
display the time as a
12-hour clock in the
first if statement,
and use AM and PM
to differentiate
the time

We make the
minutes readable
by adding a 0 if
it’s below 10, then
concatenate all
the variables and
assign to the tag h2

Get the
code:
bit.ly/

1Vz5cYv

10 PRACTICAL RASPBERRY PI PROJECTS

Create your very own Twitter bot that can retweet chunks
of wisdom from Linux User & Developer

What you’ll need
 Internet connectivity

 Latest version of Raspbian
www.raspberrypi.org/
downloads

Code your
own Twitter bot

Twitter is a useful way of sharing

information with the world and it’s

our favourite method of giving our

views quickly and conveniently. Many

millions of people use the microblogging

platform from their computers, mobile

devices and possibly even have it on

their televisions.

You don’t need to keep pressing that

retweet button, though. With a sprinkling

of Python, you can have your Raspberry

Pi do it for you. Here’s how to create your

own Twitter bot…

01 Installing the required software
Log into the Raspbian system with the username Pi and

the password raspberry. Get the latest package lists using

the command sudo apt-get update. Then install the Python

Package installer using sudo apt-get install python-pip.

Once you’ve done that, run sudo pip install twython to install

the Twitter library we’ll be using.

02 Registering with Twitter
We need to authenticate with Twitter using OAuth.

Before this, you need to go to https://dev.twitter.com/apps and

sign in with the account you’d like your Pi to tweet from. Click

the ‘Create a new application’ button. We called our application

Save your

mouse button

by creating an

automated

retweeter

20

21

CODE YOUR OWN TWITTER BOT

‘LUD Pi Bot’, gave it the same description and set the Website to

http://www.linuxuser.co.uk/. The Callback URL is unnecessary.

You’ll have to agree with the developer rules and then click the

Create button.

03 Creating an access token
Go to the Settings tab and change the Access type

from ‘Read only’ to ‘Read and Write’. Then click the ‘Update

this Twitter application’s settings’ button. The next step is to

create an access token. To do that, click the ‘Create my access

token’ button. If you refresh the details page, you should have

a consumer key, a consumer secret and access token, plus an

access token secret. This is everything we need to authenticate

with Twitter.

04 Authenticating with Twitter
We’re going to create our bot as a class, where we

authenticate with Twitter in the constructor. We take the tokens

from the previous steps as parameters and use them to create

an instance of the Twython API. We also have a variable, last_ran,

which is set to the current time. This is used to check if there are

new tweets later on.

05 Retweeting a user
The first thing we need to do is get a list of the user’s

latest tweets. We then loop through each tweet and get its

creation time as a string, which is then converted to a datetime

object. We then check that the tweet’s time is newer than the

time the function was last called – and if so, retweet the tweet.

06 The main section
The main section is straightforward. We create an

instance of the bot class using our tokens, and then go into an

infinite loop. In this loop, we check for any new retweets from

the users we are monitoring (we could run the retweet task with

different users), then update the time everything was last run,

and sleep for five minutes.

#!/usr/bin/env python2

A Twitter Bot for the Raspberry Pi that retweets any

content from

@LinuxUserMag. Written by Liam Fraser for a Linux User &

Developer article.

import sys

import time

from datetime import datetime

from twython import Twython

class bot:

 def __init__(self, c_key, c_secret, a_token, a_token_

secret):

 # Create a Twython API instance

 self.api = Twython(c_key, c_secret, a_token,

a_token_secret)

 # Make sure we are authenticated correctly

 try:

 self.api.verify_credentials()

 except:

 sys.exit(“Authentication Failed”)

 self.last_ran = datetime.now()

 @staticmethod

 def timestr_to_datetime(timestr):

 # Convert a string like Sat Nov 09 09:29:55 +0000

 # 2013 to a datetime object. Get rid of the timezone

 # and make the year the current one

 timestr = “{0} {1}”.format(timestr[:19], datetime.

now().year)

 # We now have Sat Nov 09 09:29:55 2013

 return datetime.strptime(timestr, ‘%a %b %d %H:%M:

%S %Y’)

 def retweet_task(self, screen_name):

 # Retweets any tweets we’ve not seen

Full code listing
 # from a user

 print “Checking for new tweets from @{0}”.

format(screen_name)

 # Get a list of the users latest tweets

 timeline = self.api.get_user_timeline

(screen_name = screen_name)

 # Loop through each tweet and check if it was

 # posted since we were last called

 for t in timeline:

 tweet_time = bot.timestr_to_datetime

(t[‘created_at’])

 if tweet_time > self.last_ran:

 print “Retweeting {0}”.format(t[‘id’])

 self.api.retweet(id = t[‘id’])

if __name__ == “__main__”:

 # The consumer keys can be found on your application’s

 # Details page located at https://dev.twitter.com/

 # apps(under “OAuth settings”)

 c_key=””

 c_secret=””

 # The access tokens can be found on your applications’s

 # Details page located at https://dev.twitter.com/apps

 # (located under “Your access token”)

 a_token=””

 a_token_secret=””

 # Create an instance of the bot class

 twitter = bot(c_key, c_secret, a_token, a_token_secret)

 # Retweet anything new by @LinuxUserMag every 5 minutes

 while True:

 # Update the time after each retweet_task so we’re

 # only retweeting new stuff

 twitter.retweet_task(“LinuxUserMag”)

 twitter.last_ran = datetime.now()

 time.sleep(5 * 60)

If the tweet’s time is newer than
the time the function was last
called, we retweet it

Get the
code:
bit.ly/

1RTgNSH

22

10 PRACTICAL RASPBERRY PI PROJECTS

Enjoy all the features and benefi ts of the Arduino
microcontroller on your Raspberry Pi projects

The Arduino is better at dealing with
things like servos and analog input

Program your Arduino
with Raspberry Pi

You might be wondering why you might want to attach an

Arduino to your Raspberry Pi. While there are lots of reasons,

probably the most poignant is the extra six PWM-capable

pins and another six analogue pins that a standard Arduino

Uno offers.

You see, while the Raspberry Pi has an excellent array of

pins and capabilities, it can’t do analogue and it can’t do real-

time processing out of the box. With an Arduino, additions like

servos, potentiometers and a whole array of analog sensors

are trivially easy to trigger and control.

The best part is that you don’t even have to program in

Arduino’s quasi-C++ language. All you need is a standard

USB connection between your Raspberry Pi and Arduino and

a small Python package called Nanpy. Here’s how it’s done…

01 Grab an Arduino
Before you can do anything, you

need an Arduino. We recommend the

Uno, since it’s the default choice with the

best balance of features, convenience

and affordability. Since you’ll want to put

it to use straight away, we recommend

investing in a ‘starter kit’ that includes

LEDs, servos and all that fun stuff.

02 Satisfying dependencies
We’re assuming you’re using

Raspbian (recommended), so open

your terminal because we need to get

What you’ll need
 Arduino Uno

 Internet connectivity

Nanpy
https://github.com/nanpy

23

PROGRAM YOUR ARDUINO WITH RASPBERRY PI

Like all good hardware-based ‘Hello, World’ applications, we’ll start

by making the light on the Arduino board flicker off and on.

from nanpy import Arduino

from time import sleep

Arduino.pinMode(13, Arduino.OUTPUT)

for i in range(10):

Arduino.digitalWrite(13, Arduino.HIGH)

sleep(2)

Arduino.digitalWrite(13, Arduino.LOW)

sleep(2)

This will make the light controlled by pin 13 on the Arduino

turn on and off every two seconds ten times.

You can also assign pins a name, to make your code more readable.

light = 13

Arduino.pinMode(light, Arduino.OUTPUT)

You can also assign multiple pins at the same time:

red_pin = 3

green_pin = 5

blue_pin = 9

for pins in (red_pin, green_pin, blue_pin):

 Arduino.pinMode(pins, Arduino.OUTPUT)

if you’ve got an LED screen for your RasPi you’ll probably

find it works out of the box with Nanpy. Just make sure you

assign the right pin numbers for your screen:

from nanpy import (Arduino, Lcd)

screen = Lcd([7, 8, 9, 10, 11, 12], [16, 2])

screen.printString(“Hello, World!”)

If you’re using potentiometers, buttons or analog sensors,

you’ll need to assign them as inputs

knob = 0

Arduino.pinMode(knob, Arduino.INPUT)

value = Arduino.analogRead(knob)

for i in range(10):

 print “The value of the knob is:”, knob

 sleep(1)

Sometimes you want to delay what the arduino does.

This can help you get consistent, solid readings

def get_value():

 value = Arduino.analogRead(knob)

 Arduino.delay(100)

 return value

for i in range(100):

 print “The value is:”, get_value()

Full code listing

03 Final preparations
Since the communication between the Arduino and

Raspberry Pi will happen over the USB serial connection, we

need to get the Python-serial library. At the terminal, type:

 easy_install pyserial

We also need to install the Arduino software so the Pi knows how

to deal with the device when it’s plugged in. In the terminal, type:

 sudo apt-get update

 sudo apt-get install arduino

04 Install Nanpy
There are only two steps remaining in the configuration.

First, we need to get the Nanpy package downloaded and

installed on the Pi. Our preferred way is to clone it with Git.

Navigate to your home folder in the terminal (cd ~) and do the

following in the terminal, one after the other:

 easy_install nanpy

 sudo apt-get install git

 git clone https://github.com/nanpy/nanpy.git

06 Testing Arduino with your Pi
With the installation finally complete, we can test the

setup to make sure it works properly. Before we do a proper

‘Hello World’ application in the code segment to the right, let’s

first ensure Nanpy is properly installed and the connection

between Pi and Arduino is working. From your home folder (cd

~), type the following into the terminal:

 nano nanpy_test.py

In the nano editor, simply write:

 from nanpy imort Arduino

Now press Ctrl+X, Y, then Enter to save your new file.

Finally, in the terminal, type:

 Python nanpy_test.py

If you don’t see an error, then everything should be working fine.

Now you can play with the code across the page to start learning

your way around Nanpy.

05 Configure your Arduino Uno
Why have we cloned the original Git repository?

Nanpy relies on an update to the Arduino firmware to function

correctly, so you’ll need to access the firmware folder from the

nanpy project directory to do it. Before typing the following into

the terminal, plug your Arduino Uno into a spare port on the

Raspberry Pi. Beware: the following takes some time!

 cd nanpy/firmware

 export BOARD=uno

 make

 make upload

setuptools so we can install Nanpy. At the terminal, type:

 wget https://bitbucket.org/pypa/setuptools/raw/

 bootstrap/ez_setup.py

 python ez_setup.py user

Once this is complete, you’ll be able to use the easy_install

command to install pyserial…

The best part is that you
don’t even have to program in
Arduino’s quasi-C++ language

1. Playing to
strengths
While the RasPi is
much more powerful
than Arduino, the
latter has the upper
hand when it comes
to interfacing with
the real world.
Leverage both their
strengths to make
better projects.

You’ll
learn

10 PRACTICAL RASPBERRY PI PROJECTS

Use the power of Arduino to do otherwise impossible
projects with just a Raspberry Pi alone

This is a great prototype for an attractive
RGB lamp – a great night light or mood piece

Create a Raspberry Pi
three-colour lamp

In the previous project we showed you how you can

use an Arduino microcontroller to help the Raspberry

Pi become profi cient in new skills that can drastically

increase the reach of your projects. With the aid of the

extra 12 pins capable of PWM and analogue input, you

could easily add multiple servos, analogue sensors and

even add input devices like joysticks.

In this project we’re going to demonstrate this by creating

a three-colour lamp that employs three potentiometers

(twisty knobs) to control each of the three colours in an RGB

LED light. With it you can make most of the colours of the

rainbow. As you’d expect, this would be much more diffi cult

using just a Raspberry Pi alone.

01 Program with Arduino
You’ll need to have followed the

steps from with the previous project to

correctly configure your Raspberry Pi and

Arduino Uno. You’ll also need to ensure

you’ve got all the components from the

list to the left. The resistors should be

330-ohm ideally, but can be of a higher

resistance if that’s all you have available.

Arduinos can be bought as part of

‘starter packs’ that include exactly these

kinds of components, but a quick visit to

www.cpc.co.uk should fill any holes.

What you’ll need
 Arduino Uno

 Breadboard

 Set of prototyping cables

 RGB LED (cathode)

 3x potentiometers

 3x 330 Ohm resisters

24

25

CREATE A RASPBERRY PI THREE-COLOUR LAMP

1. Analogue
inputs
It is possible to
utilise analogue
inputs with the
Raspberry Pi using
an analogue-to-
digital converter
(ADC) chip like
the MPC3008,
but they’re much
easier to handle
with an Arduino
using Nanpy.

2. Comment
your code!
We’ve tried to adhere
to the best practices
for commenting
Python code in this
project. We’re using
‘#’ comments before
assignments and
quoted comments
within functions.

You’ll
learn...

03 Connect the Arduino and Raspberry Pi
Assuming you don’t plan to write up the code

immediately yourself, you can grab it from the disc or from the

website and drop it in your home folder. With the USB cable from

the Arduino plugged into the Raspberry Pi, you simply need to

run the code with the following:

 python RGB_Mixer.py

Adjust the pots for the corresponding colour of the LED and

06 Keeping things running
The main() function is where the other functions are set

to work. Inside the function, we’re asking Python to mix the colours

(and print the values if debug is True) forever, except if we press

Ctrl+C – initiating the keyboard interrupt. Since we want to clean

up after ourselves, this action with trigger close_pins() – this turns

off the pins attached to the LED, ready to be used next time.

05 Functional operation
There are only really three main functions here, written

with self-explanatory names. Firstly, get_pots() reads in the

analogue pin value associated with each pot-pin and returns

a tuple of the value for red, green and blue respectively. This is

used by the colour_mixing() function to assign values to each of

the associated PWM pins to change the colours of the LED.

02 Populate the breadboard
The circuit for this project might look a little complicated

at first glance, but actually there’s very little going on. As you’d

expect, we want to control the LED light using PWM-enabled

pins (to have fine-grained control of the brightness) and the

potentiometers (pots) are being read by the analogue pins.

04 Setting up the pins
As we demonstrated in the last project, it’s easy to name

and set the Arduino pins with Nanpy – in our code we’ve used

two simple for loops to do the job. The debug value below simple

prints the values of each pot to the terminal – very useful for

debugging or getting a better handle on the code.

the colours should change. If the pots are adjusting the wrong

colours, just swap them over. You could use a table-tennis ball or

plastic mug to diffuse the light to great effect.

#!/usr/bin/env python

from nanpy import Arduino

from time import sleep

set LED pin numbers - these go to the

Digital pins of your Arduino

redPin = 3

greenPin = 6

bluePin = 9

set pot pin numbers - these go to the

(A)nalog pins of your Arduino

pot_r_Pin = 0

pot_g_Pin = 3

pot_b_Pin = 5

#set three coloured pins as outputs

for pins in (redPin, greenPin, bluePin):

 Arduino.pinMode(pins, Arduino.OUTPUT)

set pot pins as inputs

for pins in (pot_r_Pin, pot_g_Pin, pot_b_Pin):

 Arduino.pinMode(pins, Arduino.INPUT)

prints values to the terminal when True

debug = False

def get_pots():

 """

 Grab a reading from each of the pot pins and

 send it to a tuple to be read by the colour mixer

 """

 r = Arduino.analogRead(pot_r_Pin) / 4

 Arduino.delay(1)

 g = Arduino.analogRead(pot_g_Pin) / 4

 Arduino.delay(1)

 b = Arduino.analogRead(pot_b_Pin) / 4

 Arduino.delay(1)

 return r, g, b

Full code listing

def colour_mixing():

 """

 Call get_pots() and set

 the colour pins accordingly

 """

 r, g, b = get_pots()

 Arduino.analogWrite(redPin, r)

 Arduino.analogWrite(greenPin, g)

 Arduino.analogWrite(bluePin, b)

 Arduino.delay(1)

def close_pins():

 """

 Close pins to quit cleanly (doesn't work with a 'for

 loop' despite the pins happily initialising that way!)

 """

 Arduino.digitalWrite(redPin,Arduino.LOW)

 Arduino.digitalWrite(greenPin,Arduino.LOW)

 Arduino.digitalWrite(bluePin,Arduino.LOW)

def main():

 """

 Mix the colours using three pots.

 Ctrl+C cleans up the pins and exits.

 """

 try:

 print "Adjust the pots to change the colours"

 while True:

 colour_mixing()

 sleep(0.2)

 if debug:

 print "Red: {:d} | Green:

{:d} | Blue: {:d}".format(r, g, b)

 except KeyboardInterrupt:

 close_pins()

 print "\nPins closed"

if __name__ == '__main__':

 main()

Get the
code:
bit.ly/

1Vz5sGL

10 PRACTICAL RASPBERRY PI PROJECTS

We update the retro classic Pong for the Linux generation
with a new library called SimpleGUITk

Rob got off to a good start, but it was

all downhill from there…

Make a game
with Python

The Raspberry Pi is a fantastic way

to start learning how to code. One

area that can be very rewarding for

amateur coders is game programming,

allowing for a more interactive

result and a greater sense of

accomplishment. Game programming

can also teach improvisation and

advanced mathematics skills for

code. We’ll be using the fantastic

SimpleGUITk module in Python, a

very straightforward way of creating

graphical interfaces based on Tkinter.

01 Python module preparation
Head to the websites we’ve listed in ‘What you’ll need’ and

download a zip of the source fi les from the GitHub pages. Update

your Raspbian packages and then install the following:

 $ sudo apt-get install python-dev python-setuptools

tk8.5-dev tcl8.5-dev

02 Install the modules
Open the terminal and use cd to move to the extracted

Pillow folder. Once there, type:

 $ sudo python setup.py install

Once that’s complete, move to the simpleguitk folder and use the

same command to install that as well.

What you’ll need
 Latest version of Raspbian
www.raspberrypi.org/downloads

 Pillow
https://github.com/python-imaging/
Pillow

 SimpleGUITk
https://github.com/dholm/
simpleguitk/

26

27

MAKE A GAME WITH PYTHON

import simpleguitk as simplegui

import random

w = 600

h = 400

tux_r = 20

pad_w= 8

pad_h = 80

def tux_spawn(right):

 global tux_pos, tux_vel

 tux_pos = [0,0]

 tux_vel = [0,0]

 tux_pos[0] = w/2

 tux_pos[1] = h/2

 if right:

 tux_vel[0] = random.randrange(2, 4)

 else:

 tux_vel[0] = -random.randrange(2, 4)

 tux_vel[1] = -random.randrange(1, 3)

def start():

 global paddle1_pos, paddle2_pos, paddle1_vel, paddle2_vel

 global score1, score2

 tux_spawn(random.choice([True, False]))

 score1, score2 = 0,0

 paddle1_vel, paddle2_vel = 0,0

 paddle1_pos, paddle2_pos = h/2, h/2

def draw(canvas):

 global score1, score2, paddle1_pos, paddle2_pos,

tux_pos, tux_vel

 if paddle1_pos > (h - (pad_h/2)):

 paddle1_pos = (h - (pad_h/2))

 elif paddle1_pos < (pad_h/2):

 paddle1_pos = (pad_h/2)

 else:

 paddle1_pos += paddle1_vel

 if paddle2_pos > (h - (pad_h/2)):

 paddle2_pos = (h - (pad_h/2))

 elif paddle2_pos < (pad_h/2):

 paddle2_pos = (pad_h/2)

 else:

 paddle2_pos += paddle2_vel

 canvas.draw_line([w / 2, 0],[w / 2, h], 4, “Green”)

 canvas.draw_line([(pad_w/2), paddle1_pos + (pad_h/2)],

[(pad_w/2), paddle1_pos - (pad_h/2)], pad_w, “Green”)

 canvas.draw_line([w - (pad_w/2), paddle2_pos + (pad_h/2)],

[w - (pad_w/2), paddle2_pos - (pad_h/2)], pad_w, “Green”)

 tux_pos[0] += tux_vel[0]

 tux_pos[1] += tux_vel[1]

 if tux_pos[1] <= tux_r or tux_pos[1] >= h - tux_r:

 tux_vel[1] = -tux_vel[1]*1.1

 if tux_pos[0] <= pad_w + tux_r:

Full code listing
 if (paddle1_pos+(pad_h/2)) >= tux_pos[1] >= (paddle1_

pos-(pad_h/2)):

 tux_vel[0] = -tux_vel[0]*1.1

 tux_vel[1] *= 1.1

 else:

 score2 += 1

 tux_spawn(True)

 elif tux_pos[0] >= w - pad_w - tux_r:

 if (paddle2_pos+(pad_h/2)) >= tux_pos[1] >=

(paddle2_pos-(pad_h/2)):

 tux_vel[0] = -tux_vel[0]

 tux_vel[1] *= 1.1

 else:

 score1 += 1

 tux_spawn(False)

 canvas.draw_image(tux, (265 / 2, 314 / 2), (265, 314),

tux_pos, (45, 45))

 canvas.draw_text(str(score1), [150, 100], 30, “Green”)

 canvas.draw_text(str(score2), [450, 100], 30, “Green”)

def keydown(key):

 global paddle1_vel, paddle2_vel

 acc = 3

 if key == simplegui.KEY_MAP[“w”]:

 paddle1_vel -= acc

 elif key == simplegui.KEY_MAP[“s”]:

 paddle1_vel += acc

 elif key==simplegui.KEY_MAP[“down”]:

 paddle2_vel += acc

 elif key==simplegui.KEY_MAP[“up”]:

 paddle2_vel -= acc

def keyup(key):

 global paddle1_vel, paddle2_vel

 acc = 0

 if key == simplegui.KEY_MAP[“w”]:

 paddle1_vel = acc

 elif key == simplegui.KEY_MAP[“s”]:

 paddle1_vel = acc

 elif key==simplegui.KEY_MAP[“down”]:

 paddle2_vel = acc

 elif key==simplegui.KEY_MAP[“up”]:

 paddle2_vel = acc

frame = simplegui.create_frame(“Tux for Two”, w, h)

frame.set_draw_handler(draw)

frame.set_keydown_handler(keydown)

frame.set_keyup_handler(keyup)

tux = simplegui.load_image(‘http://upload.wikimedia.org/

wikipedia/commons/a/af/Tux.png’)

start()

frame.start()

03 Write your code
Launch IDLE 2, rather than IDLE 3, and open a new

window. Use the code listing to create our game ‘Tux for Two’. Be

careful to follow along with the code to make sure you know what

you’re doing. This way, you can make your own changes to the

game rules if you wish.

04 Set up the game
There’s nothing too groundbreaking to start the code:

Tux’s and the paddles’ initial positions are set, along with the

initial speed and direction of Tux. These are also used when

a point is won and the playing field is reset. The direction and

speed is set to random for each spawn.

06 SimpleGUI setup code
The last parts are purely for the interface. We tell the

code what to do when a key is depressed and then released, and

give it a frame to work in. The frame is then told what functions

handle the graphics, key functions etc. Finally, we give it

frame.start() so it starts.

05 The SimpleGUI code
The important parts in the draw function are the

draw_line, draw_image and draw_text functions. These are

specifically from SimpleGUI, and allow you to easily put these

objects on the screen with a position, size and colour. You need to

tie them to an object, though – in this case, canvas.

link to http://bit.ly/1Vz5sGL

Get the
code:
bit.ly/

1MK2cCy

10 PRACTICAL RASPBERRY PI PROJECTS

Fancy yourself as the next Nick Park? Set up this DIY stop-
motion studio and see what you can do

Pi-Mation is available on GitHub via
https://github.com/russb78/pi-mation

Raspberry Pi stop
motion animation

The Raspberry Pi camera module

opens the door for your Pi projects to

incorporate aspects of photography

and movie making. We’re combining

both here to create a fully featured stop-

motion animation application, Pi-Mation,

which makes it incredibly easy to create

impressive HD animations.

We’ve written this project with

Python and it relies on two libraries

that you will need to install. Picamera

(picamera.readthedocs.org) is a pure

Python interface to the Raspberry

Pi camera module and is a must for

all camera module owners. Pygame

(www.pygame.org), which ensures our

images can be displayed on demand.

01 Set up the camera module
First things fi rst, you need to make sure your Raspberry Pi

is up to date. In the terminal, type:

 sudo apt-get update && sudo apt-get upgrade

Next we need to update the Pi’s fi rmare and ensure camera

module is activated. Bear in mind that this takes some time.

 sudo rpi-update

 sudo raspi-config

02 Install other dependencies
Next we’ll make sure Pygame and picamera are installed:

 sudo apt-get install python-setuptools

 easy_install -user picamera

Finally, to install Pygame and the video apps, type:

 sudo apt-get install python-pygame

 sudo apt-get install libav-tools && sudo

apt-get install omxplayer

What you’ll need
 Latest version of Raspbian
www.raspberrypi.org/downloads

 picamera Python module
 picamera.readthedocs.org

 RasPi camera module

 Pygame
www.pygame.org

28

29

RASPBERRY PI STOP MOTION ANIMATION

import pygame, picamera, os, sys

pics_taken = 0

current_alpha, next_alpha = 128, 255

fps = 5

pygame.init()

res = pygame.display.list_modes() # return the best resolution

for your monitor

width, height = res[0]

print "Reported resolution is:", width, "x", height

start_pic = pygame.image.load(os.path.join('data',

'start_screen.jpg'))

start_pic_fix = pygame.transform.scale(start_pic, (width, height))

screen = pygame.display.set_mode([width, height])

pygame.display.toggle_fullscreen()

pygame.mouse.set_visible = False

play_clock = pygame.time.Clock()

camera = picamera.PiCamera()

camera.resolution = (width, height)

def take_pic():

 global pics_taken, prev_pic

 pics_taken += 1

 camera.capture(os.path.join('pics', 'image_' +

str(pics_taken) + '.jpg'), use_video_port = True)

 prev_pic = pygame.image.load(os.path.join('pics', 'image_' +

str(pics_taken) + '.jpg'))

def delete_pic():

 global pics_taken, prev_pic

 if pics_taken >= 1:

 pics_taken -= 1

 prev_pic = pygame.image.load(os.path.join('pics',

'image_' + str(pics_taken) + '.jpg'))

def animate():

 camera.stop_preview()

 for pic in range(1, pics_taken):

 anim = pygame.image.load(os.path.join('pics', 'image_' +

str(pic) + '.jpg'))

 screen.blit(anim, (0, 0))

 play_clock.tick(fps)

 pygame.display.flip()

 play_clock.tick(fps)

 camera.start_preview()

def update_display():

 screen.fill((0,0,0))

 if pics_taken > 0:

 screen.blit(prev_pic, (0, 0))

 play_clock.tick(30)

 pygame.display.flip()

def make_movie():

 camera.stop_preview()

 pygame.quit()

Full code listing
 print "\nQuitting Pi-Mation to transcode your video."

 os.system("avconv -r " + str(fps) + " -i " + str((os. path.

join('pics', 'image_%d.jpg'))) + " -vcodec libx264 video.mp4")

 sys.exit(0)

def change_alpha():

 global current_alpha, next_alpha

 camera.stop_preview()

 current_alpha, next_alpha = next_alpha, current_alpha

 return next_alpha

def quit_app():

 camera.close()

 pygame.quit()

 print "You've taken", pics_taken, " pictures. Don't

forget to back them up!"

 sys.exit(0)

def intro_screen():

 intro = True

 while intro:

 for event in pygame.event.get():

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_ESCAPE:

 quit_app()

 elif event.key == pygame.K_F1:

 camera.start_preview()

 intro = False

 screen.blit(start_pic_fix, (0, 0))

 pygame.display.update()

def main():

 intro_screen()

 while True:

 for event in pygame.event.get():

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_ESCAPE:

 quit_app()

 elif event.key == pygame.K_SPACE:

 take_pic()

 elif event.key == pygame.K_BACKSPACE:

 delete_pic()

 elif event.key == pygame.K_RETURN:

 make_movie()

 elif event.key == pygame.K_TAB:

 camera.preview_alpha = change_alpha()

 camera.start_preview()

 elif event.key == pygame.K_F1:

 camera.stop_preview()

 intro_screen()

 elif event.key == pygame.K_p:

 if pics_taken > 1:

 animate()

 update_display()

if __name__ == '__main__':

 main()

03 Final setup
We’re going to install Pi-Mation

with Git, so let’s make sure it’s installed:

 sudo apt-get install git

With a terminal open, navigate to your

home directory (with cd ~) and type:

 git clone https://github.com/

russb78/pi-mation.git

If you play with the code and break it, you

can revert it back to its original state with:

 git checkout pi-mation.py

04 Running and testing
Pi-Mation

Now navigate into the pi-mation folder

and run the application with:

 python pi-mation.py

Pressing the space bar calls take_pic()

from the main() loop, which saves an

image and creates a preview that’s loaded

by update_display(). The Tab button is

coded to toggle between two states by

asking two variables to switch values.

05 Getting animated
The main() loop checks for keyboard events before

updating the screen around 30 times per second. Since the

camera’s live preview is working independently of that loop,

update_display() only needs to worry about updating the

preview image (prev_pic) Since take_pic() adds to pics_taken,

only the very latest picture is shown. The animate() function is

essentially a microcosm of update_display(). When the P key is

pressed, the live preview is suspended and for all of the pictures

taken (pics_taken), each one will be ‘blitted’ (updated) on the

main window.

Get the
code:
bit.ly/

1LwoOJA

30

Hardware

he

at

32 Make a Pi 2 desktop PC
Use your Pi as a replacement PC

36 How I made: PiKon
Check out this 3D-printed telescope

38 Build a RasPi-controlled car
Take control of a remote-controlled car

44 How I made: Robot arm
Get to grips with a Pi-powered robot arm

46 Make a Raspberry Pi HTPC
Finally create a more powerful machine

48 Make a tweeting wireless
flood sensor
Flood-proof your basement

Take control of

a car

38

31

50 Build a Raspberry
Pi-powered Bigtrak
Control your own all-terrain vehicle

54 Build a networked Hi-Fi
Create a networked Hi-Fi with a Pi Zero

56 Make a digital
photo frame
Turn your Pi into a beautiful photo frame

60 Build a Raspberry Pi
Minecraft console
Create a fully functional games console

66 Visualise music in
Minecraft with PianoHAT
Combine code, Minecraft and the PianoHAT

Read up on this
3D-printed telescope

Check out a crazy
robot arm

Build a RasPi
Minecraft console

54

36

44

60

Display your
digital photos

56

Network
a Hi-Fi

HARDWARE

Learn the basics of OpenWRT using a
Raspberry Pi as a router

Turn a Pi into a router

Controlling the interconnects between various devices

is paramount to keeping systems secure and safe. Sadly,

most router operating systems are closed source – fi nding

vulnerabilities in them is diffi cult to impossible. Sadly, running

dedicated open-source router operating systems is not a

solution for the average user, as they tend to demand high-end

hardware with prohibitively high prices.

OpenWRT is an affordable and effi cient alternative. It

foregoes some of the complexities found in traditional router

operating systems, thereby allowing for lower hardware

What you’ll need
 Raspberry Pi (V2B recommended, V1B
possible)

 Decent quality MicroUSB power supply

 Cardreader + MicroSD Card

 Compatible USB-Ethernet adapter (i-tec-
europe.eu/?t=3&v=296)

 Optional, but recommended: Ethernet switch

(no router!)

requirements. The community has ported the system to

various routers: with a little care, a compatible router can

be found for £100 or less. Invest a few hours of your time to

transform it into a lean and mean fi leserver, torrent client or –

confi guration allowing – even a system capable of controlling

real-world hardware via serial links.

In the following pages we will introduce you to the basics of

OpenWRT using a well-known single-board computer. That

knowledge can then be applied to a variety of other, more

suitable hardware solutions.

32

OpenWRT is an affordable
and effi cient alternative

33

TURN A PI INTO A ROUTER

01 Set it up
Deploying an operating system requires you to be in

possession of a suitable image: due to differences in the

hardware, RPi 1 and 2 are targeted with different files which

can be downloaded at http://bit.ly/1T7t4UC. The following

steps are performed on a Raspberry Pi 2 using Chaos

Calmer 15.05.1. Burn the image openwrt-15.05.1-brcm2708-

bcm2709-sdcard-vfat-ext4.img to the SD card in a fashion

of your choice: Ubuntu’s Image Writer is the utility shown

in the figure. Finally, insert the SD card, connect the RPi’s

native ethernet port to your PC and power up the contraption.

Interested individuals can connect an HDMI monitor in order

to see the boot process “live”.

02 Get connected
Starting OpenWRT on a Raspberry Pi 2 takes about

half a minute: when done, the message shown in the figure will

appear. At this point, the ethernet port of the Raspberry Pi 2 will

be set to a fixed IP address of 192.168.1.1 and will await network

connections from other workstations. Open the “Network

On paper, the RPi
3’s embedded Wi-Fi
module makes it
a perfect access
point. This is not
the case for two
reasons: first of
all, the range of the
module has been
shown to be abysmal
in lab tests. Second,
BroadComm has not
released the driver
code – at the time
of going to press, its
use in OpenWRT is
unsupported.

Limited
support for
Raspberry
Pi 3

connections” applet of the host, and configure it to use a static

IP address via the settings shown in the figure.

Be aware that 192.168.1.1 is a popular address for routers:

if your Wi-Fi router uses it, the network connection needs to be

disabled during the following steps.

03 Telnet or SSH?
Chaos Calmer 15.05.1 keeps the Telnet service open

on unconfigured instances. The first bit of work involves

connecting to the Telnet client: invoke the passwd command

to set a new password. Complaints about low password

strength can be ignored at your own peril: passwd will

not actually prevent you from setting the passcode to be

whatever you want, but hackers might be delighted about the

easier attack vector.

Once the new root password is set, the Telnet server will

disable itself. From that moment onward, your OpenWRT

instance can only be controlled via ssh.

 tamhan@tamhan-thinkpad:~$ telnet 192.168.1.1

 Trying 192.168.1.1...

 Connected to 192.168.1.1.

 Escape character is ‘̂]’.

 . . .

 root@OpenWrt:/# passwd

 Changing password for root

 New password:

 Bad password: too short

 Retype password:

 Password for root changed by root

 - - -

 tamhan@tamhan-thinkpad:~$ ssh root@192.168.1.1

 The authenticity of host ‘192.168.1.1 (192.168.1.1)’

can’t be established.

 RSA key fingerprint is 11:80:4b:14:cc:b8:9a:a6:42:6a:

bf:8d:96:2a:1b:fa.

 Are you sure you want to continue connecting

(yes/no)? yes

 Warning: Permanently added ‘192.168.1.1’ (RSA) to

the list of known hosts.

04 Let’s play nice
The following steps assume that your router will

live behind another router. As the activation of USB support

requires the downloading of a batch of packages, our first

act involves making OpenWRT play nicely with the rest of the

network. As the stock distribution includes only vi, open the

web interface by entering http://<ip> into a computer of your

choice. Next, click Network>Interfaces and click the Edit

button next to br-lan. Set the protocol field to DHCP client

and select the Switch Protocol button.

Finally, click Save&Apply, close the web page and

disconnect the RPi from your PC. Next, connect both PC and

Pi to the existing router and run nmap as root in order to find

its newly-assigned IP address.

The command shown here is a little nifty in that it

instructs nmap to scan the entire 255 addresses of the

subnet – be sure to adjust it to your local environment.

Furthermore, keep in mind that the IP settings of the PC

must be restored to the ones used originally, with a reboot

recommended for good practice.

 tamhan@tamhan-thinkpad:~$ sudo nmap -sn

192.168.1.0/24

34

HARDWARE

Even though the
Raspberry Pi makes
a great demo
and evaluation
system, using it
in practice might
lead to suboptimal
performance.
This is caused by
the unique bus
architecture: both
ethernet ports
must share the USB
bandwidth. On the
RPi 2, this problem
is mitigated by the
signifi cantly higher
CPU performance.

For large
networks, using
an X86 based
embedded system
tends to yield better
results. Single-
board computers
like the BananaPi are
another alternative,
but tend to crash
when confronted
with specifi c
ethernet packages.

Pis make
bad
routers

 Starting Nmap 6.40 (http://nmap.org) at 2016-05-

03 21:14 CEST

 . . .

 Nmap scan report for 192.168.1.104

 Host is up (-0.099s latency).

 MAC Address: B8:27:EB:53:4E:D9 (Raspberry Pi

Foundation)

05 Deploy missing USB drivers
At this point, our OpenWRT instance is connected to

the internet at large. This allows opkg to download required

packages – connect yourself using SSH and the IP address

determined by NMAP, and proceed to downloading the packets

listed in the code accompanying this step. When all modules

are installed, entering dmesg will show that the ASIX ethernet

interface has been detected and confi gured as interface eth1

according to the fi gure.

 opkg update

 opkg install kmod-usb2 usbutils kmod-usb-core

 opkg install kmod-usb-net kmod-usb-net-asix

06 Connect
Even though dongles based on the ASIX AX88772B are

quite common, not being able to procure one does not condemn

your experiment to failure. Connect the USB to LAN bridge to a

Raspberry Pi running Raspbian and enter the lsmod command. It

will provide you with information about the driver modules being

used, which can then be tracked down on OpenWRT. Googling

<chipset> openwrt or <productname> openwrt can also yield

useful results.

07 Open the web interface
After completing the kernel configuration process,

our new interface is ready and awaits the deployment of a

configuration. As the OpenWRT image provided for the Raspberry

Pi restricts us to vi (nano will not install), configuration is best done

via the web interface we touched on earlier. It can be accessed

by pointing your browser at the URL of the router; log-in can be

accomplished via the root password used on the command line.

08 Let’s get routing
The newly-created USB ethernet port will be used to

connect clients: you can connect either a “dumb switch” or a

single device. In both cases, a DHCP server is needed in order to

provide IP addresses to the clients.

Click the Add new interface button, and name the new

Interface Clients. Next, select the protocol to be Static address

and select the newly created interface eth1. Next, scroll to the

bottom of the window and click the Setup DHCP Server button in

order to fully populate the form.

With that, the IPv4 address and broadcast fi elds must be set

up. Finally, click Save & Apply in order to commit the changes to

the network stack. Next, open the network confi guration once

again and set the Firewall Settings to the fi rewall zone LAN.

09 Rearrange the interfaces
By default, the LAN interface is bridged. This is not

necessary: open its properties, select the Physical Settings tab

and unselect the Bridge interfaces checkpoint. Next, open the

Firewall settings tab and assign the WAN zone. Finally, another

click on Save & Apply makes OpenWRT assign the attributes

leading to the confi guration shown in the fi gure accompanying

this step (see image on the right).

10 Firewall ahoy!
From this point onward, attempting to interact with the

LuCI frontend from “outside” of the network will lead to ‘Unable

to connect’ errors – by default, remote confi guration is not

allowed to make attacks on OpenWRT more diffi cult.

Solve this problem by disconnecting the workstation from

the “outer router”, and connect to the Raspberry Pi’s USB

network interface instead. Then, perform an ifconfi g command

and connect to the standard gateway in order to open the LuCI

interface once again.

Should you fi nd yourself in the situation that no IP adress is

assigned to the workstation, reboot the process computer and

reconnect the ethernet cable.

 tamhan@tamhan-thinkpad:~$ ifconfig

 eth0 Link encap:Ethernet HWaddr

28:d2:44:24:4d:eb

 inet addr:192.168.2.157 Bcast:192.168.2.255

Mask:255.255.255.0

 inet6 addr: fe80::2ad2:44ff:fe24:4deb/64 Scope:Link

35

11 Test the presence of the router
As long as all other network connections are disabled, the

workstation can connect to the internet only via the RPi. Enter

“mtr www.google.com” in a command line in order to generate

the tree structure shown in the fi gure accompanying this step

– from a latency point of view, our OpenWRT access point looks

quite good when operating under light load.

12 Analyse the network status
Generating live diagrams with further information about

the state of the router is an interesting feature. Open LuCI

and select Status > Realtime graph in order to open a set of

diagrams telling you more about CPU and network loads.

13 Deploy fi le system support
If your router contains a USB port, it can – in theory –

be used to access various external USB storage media. Sadly,

the required packages are not provided out of the box. This

problem can be remedied by deploying the following packages

via opkg:

 kmod-usb-storage required

 kmod-usb-storage-extras

 block-mount

 kmod-scsi-core

In addition to that, a kmod-fs-* package containing the drivers

for the fi le system is required. One small gotcha awaits all those

who want to access FAT fi lesystems – the relevant package

goes by the name “kmod-fs-msdos”.

14 Learn more
OpenWRT can be used for a variety of topics not discussed

here due to space constraints. The extremely helpful OpenWRT

project team provides a set of step-by-step recipes at https://

wiki.openwrt.org/doc/howto/start – if you feel like implementing

something, check whether someone else has already walked the

trek for you!

15
Find supported hardware
Our current contraption on these pages – simply

made up of a Raspberry Pi and a batch of peripherals –

works well for evaluation purposes, but is not particularly

well suited to practical deployments. Should you feel

like fi nding a dedicated router, start out by looking at the

compatibility list provided at https://wiki.openwrt.org/toh/

start. Please be aware that router manufacturers tend to

change their hardware quite frequently: in some cases, more

than twelve revisions with completely different integrated

circuits are known.

16 Hardcore debugging
Should you lock yourself out of your OpenWRT router,

don’t fret: if the memory is not soldered in, simply mount it with

a card reader of your choice. Most, if not all, Linux distributions

will display the contents of the fi le systems immediately –

accessing some of the fi les requires that the fi le manager is run

with root rights (sudo nautilus).

TURN A PI INTO A ROUTER

Left The 3D-printed base for the telescope is
also composed of pieces of Meccano as well
as the small square of aluminium

Below Here is an example of the kind of photo
that can be taken with the PiKon telescope:
the Moon, with enough detail to be able to see
its craters and surface texture

Components list
 Raspberry Pi

 Camera module

 3D printer

 5 CAD files to print
 bit.ly/1wfl9a8

 White venting duct

 Small square of aluminium

 Focusing knob

 Meccano pieces

 Tripod

Optical tube 3D-printing this
part of the PiKon would have been
very inefficient, so Andy and Mark
used readily-available venting duct

3D-printed If you have already
invested in a 3D printer or otherwise
have access to one, the material cost
of printing the parts is negligible

Camera module The camera
module’s lens has been removed and
it is placed below a 4.5-inch mirror,
which forms the image

Focusing Things get a little more
complex down towards the base and
some Meccano pieces are used to
hold everything together

36

HARDWARE

37

Tell us how you began your project

Mark Wrigley I run this small company

called Alternative Photonics and like

to find out about new technologies.

When Sheffield’s Festival of the Mind

came along I thought of what could we

put together in terms of things that are

new and disruptive, and that’s how the

whole project started. The two things I

was interested in were using Raspberry

Pis for photography and 3D printing.

With 3D printers you’ve got a device in

the ballpark of £500, putting it amongst

the price you’d pay for consumer items,

so manufacturing is something you can

do at home. There are companies who

will print something for you, so you send

in a design and they’ll produce it. And

there are maker communities – Andy

runs a group called Sheffield Hardware

Hackers and Makers.

Andy Kirby Sheffield Hardware Hackers

and Makers is for anyone off the street

to come along to if they want to hack

and make things. I set it up as part of

the original RepRap project that ran on

the Internet quite some years ago [Ed:

RepRaps are 3D printer kits that can

print parts for more RepRaps]. I found

that there were quite a few people

building printers who got to a certain

point and then got stuck, so I set up

this group originally to be a drop-in for

people to come along to and get the help

they needed.

Andy, what was your role in the PiKon?

Andy I helped Mark pick a 3D printer

that was going to be pitched right for his

skillset and then, as he was building up

the printer, when he got to bits where

he got stuck he’d bring it along to the

Hardware Hackers group and say ‘It

doesn’t do this right’ or ‘I can’t get it

to do that’, and we’d work through the

problems together. Once he’d got his

printer going, I worked through the CAD

software with him to see what was

available that was open source and within

his capabilities. There are various things

you can’t do with a 3D printer when you

design parts, so we had a conversation

about that and I gave him the shortcut to

get working parts out quicker.

How does the PiKon work?

Mark Most telescopes work on the

principle that you have some sort of

object lens or mirror which forms an

image and then you use an eyepiece

to examine that image, so it’s usually

what’s termed as a virtual image. With

the PiKon, what we’re doing is using

the objective device, in this case a

4.5-inch (335mm) mirror, to form an

image and then placing the Raspberry

Pi camera without its lens – so just a

sensor – where the image is formed. So

effectively, instead of using an eyepiece

we’re examining the image electronically

by placing the Raspberry Pi sensor

there, and the sensor is suitably small so

we’re able to examine a fairly small area

of the image.

What kind of resolution do you get?

Mark At the moment, the setup

that we’ve got is equivalent to a

magnification of about 160. If you

look at the Moon, the field of view of

your eye is about half of one degree;

the PiKon’s maximum field of view

is about a quarter of one degree, so

effectively you can see about half the

moon in full frame. The next thing I’d

like to do is look at planets. In terms

of its resolution, the PiKon’s sensor is

five megapixels, which is 2500x2000

pixels. If you’re going to reproduce

an image in print you’d normally use

something like 300dpi, so 5MP would

allow you to reproduce something like

an A4 image. On a computer screen

all you need is 72dpi, so what I’m quite

interested in doing next is seeing how

much magnification we can get simply

by cropping – so literally throwing away

some of the pixels to be able to zoom in

on something like a planet. If you read

the Astronomy for Beginners stuff, they

talk about needing a magnification of

200-250 to be able to observe planets,

so I’m hoping we can do things like see

the rings of Saturn. We’re not out to rival

the Hubble – we think that what you’ve

got is a reasonable instrument and you

can do a few interesting things with

it. The other thing is that because it’s

using a Raspberry Pi sensor instead of

an eyepiece, you’re immediately into the

world of astrophotography rather than

doing observations, so that’s the sort of

way we’re going.

How do you control the PiKon’s camera?

Mark We would like to do it better!

Andy At the moment it’s done through

the command line. I’m not a Raspberry

Pi programmer… So we’re using

raspistill at the moment, which gives

you a certain number of seconds of

preview and then takes the picture,

so it’s a bit clunky. I’m talking to a guy

who’s into Raspberry Pi and is also a

photographer, and he’s written some

programs where you have a shutter

button. The next thing to do then is to

control PiKon from an input/output

device like a shutter button and

then give the JPG files you produce a

sequential or a date-stamped filename.

One thing I’d like to see next is if we

could get this hardware out into the

public and attract people to actually

come along and develop more and more

software for it. I tried taking pictures of

the International Space Station with an

ordinary camera, for example. It’s really

difficult because suddenly this dot

comes flying across the horizon and you

have to swing around, get your camera

lined up, press the shutter and so on.

One thought I had was it would be nice

if you could take multiple shots with the

PiKon – you press a button and it keeps

taking a photograph every five seconds.

Andy Kirby
was an early
contributor to the
RepRap project and
runs the Sheffield
Hardware Hackers
and Makers group

Like it?
The Raspberry Pi
Foundation website
featured a project
that mounts the
Pi and camera
onto a telescope
and captures
great images bit.
ly/1qTp3Pb

Further
reading
If you’re interested
in astrophotography
and developing
software for
PiKon, check out
these astronomy
packages:
bit.ly/100wj65

Mark Wrigley
is a member of
the Institute of
Physics and holds
a Licentiateship
with the Royal
Photographic
Society

HOW I MADE: PIKON

How I made:
PiKon
3D-printed telescope meets RasPi camera

The setup we’ve got is equivalent
to a magnification of about 160

Build a Raspberry
Pi-controlled car
Make use of cutting-edge web technologies to take control of a
remote controlled car with a smartphone or tablet…

38

HARDWARE

Web technologies are moving forward at a huge pace, cloud

technologies are bringing mass computing to individuals,

and hardware has reached a perfect moment in time where

sensors, displays and wireless technology have all evolved

into efficient and affordable devices. We truly are at a point

where nearly anyone can take an idea from nothing to a working

product in a week and at very little cost. Just like this project,

which is fun, quick and easy to build on and a fantastic way to

learn. We’re going to grab an old remote-control car, rip off its

radio receiver and replace it with the Raspberry Pi, hook it up on

the network, fire up a bleeding-edge web server and then get

your smartphone or tablet to control it by tilting the device. By

the end of this, not only will you have a fun toy – you will have

learnt about the basic technologies that are starting to power

the world’s newest and biggest economy for the foreseeable

future. Welcome to tomorrow!

39

BUILD A RASPBERRY PI-CONTROLLED CAR

Components list
 A toy RC car with two
channels (steering and drive)

 Adafruit PWM I2C
servo driver

 Female-to-female
jumper cables

 5V battery power bank

Components from
www.modmypi.com

Estimated cost: £60 / $100

Before you can take control of your car with a smartphone, you’ll
need to make some signifi cant changes to the chassis
To help our toy car come to life using the

latest web technologies and our credit

card-sized computer, we’re going to

need to make some pretty signifi cant

changes to its workings. Fortunately,

the most complex aspects of the build

can be accomplished with a couple

of affordable purchases, namely a

servo controller board to take care

of the steering and throttle, and a 5V

battery pack to keep the Raspberry Pi

running smoothly.

01 Identify and remove old radio
This project is effectively replacing the car’s normal

transmitter and receiver. Notice the three sockets on the original

receiver: one goes to the motor controller and one to the steering

servo. Some remote-control cars also have separate battery for

the electronics, but those (especially with an electronic speed

controller with BEC) get their 5V power supply directly from

the speed controller, saving on components. If you don’t have

a speed controller with 5V BEC, you’ll need to get a 5V supply

elsewhere. Many shops sell 5V battery power supplies – often as

mobile phone emergency top-ups. www.modmypi.com sells a

suitable 5V battery power bank for under £20.

Servo control We’ve used
the Adafruit PWM I2C servo driver
board from www.modmypi.com

Pi-powered The Raspberry
Pi sits front and centre to keep it
as safe as possible

Power up This 5V battery
pack keeps our Raspberry Pi
running for a good few hours

Pick a car You can use
pretty much any affordable
car for this project

40

HARDWARE

Raspberry Pi-controlled car build process

41

BUILD A RASPBERRY PI-CONTROLLED CAR

We’re using the Raspberry Pi’s
I2C bus to control the servo
interface board

02 Attach the servo cables to
the new controller

We soldered our 16-channel I2C servo

controller board from www.modmypi.com

as per its instructions and simply plugged

channel 0 (steering) and channel 1 (motor)

headers onto it. There are six cables in

total: the bottom two are ground, the

middle two are the power and the top two

are the PWM (pulse-width modulation)

signals. This is a good time to think of

places to mount the extra components

and the best fixing method seems to be

sticky-back Velcro.

03 Connect the I2C bus to the
Raspberry Pi

We’re using the Raspberry Pi’s I2C bus

to control the servo interface board,

which only needs four cables – they all go

between the Raspberry Pi and the servo

controller board as pictured. This month’s

accelerometer tutorial explains how to set

up I2C on the Raspberry Pi.

From top to bottom we need to use the

1. GND, 2. SCL, 3. SDA and 4. VCC, which

map directly to the same ports on the

Raspberry Pi. Essentially this is power,

ground and two communication channels

– it’s all pretty straightforward so far…

04 Hooking it up to the
Raspberry Pi

On a Rev 1 Raspberry Pi, the cables look

the same. Though the Rev boards have

different labelling, the physical pins are

in the same place. Bottom left (closest

to the RasPi power connector) is the 3.3V

power; next to that is the SDA header,

05 Overview of the main
components

You should now have the servo board in

the middle with the steering servo and

speed controller on one side and the

Raspberry Pi on the other. The motor is

connected to the other end of the speed

controller (that end should have much

thicker wires); the speed controller

also has two thick wires going to the

main car’s battery – in this case a 7.2V

NiCad. We now have two very separate

power systems with the high current

motors on one side and the low current

electronics on the other. Let’s make

sure it stays that way!

06 Find everything a home
Now it’s time to find a home

for the new components. Use plenty of

sticky-back Velcro, tie wraps or elastic

bands to keep everything secure and

find spaces in the car’s body to hide the

wires where possible. While it is possible

to stick or screw the Raspberry Pi directly

to the car, we recommend to use at least

the bottom half of a case for added

protection and ease of access. Insert your

SD card, network cable or Wi-Fi dongle (if

programming from another machine) and

power supply. Sit back and admire your

hacking. Next we’ll tackle the software

side of the project…

which is the data channel. Next to that

in the bottom right is the SCL channel,

which controls the clock of the I2C

devices. And finally – on the top-right port

– is the Ground.

Step 02

Step 03

Step 05

Step 06

What you’ll need
 A RasPi car, ready to go

 An internet connection

 A reasonably modern
smartphone/tablet

 Pi car source code
github.com/shaunuk/picar

Control a toy car with a smartphone and the latest web technologies

Controlling your Raspberry Pi-powered car

Now we have our fantastic Raspberry

Pi-powered car all wired and charged,

it’s time to make it come alive. We’re

using the best web technologies

that the JavaScript programming

language offers, to harness the natural

movement of your hand and wirelessly

drive the vehicle. Each little movement

will trigger an event that calculates

what the car should do and then sends

it over a socket connection up to 20

times a second.

01 Download and install
the software

To get the I2C connectivity working,

you can follow the steps from pages

64-65. Next we’ll need to fi nd a home

for our new project code – how about /

var/www/picar? Type sudo mkdir /

var/www/picar in the terminal to make

the directory and then change into that

directory: cd /var/www/picar

Now, to download the project using

Git, type sudo git clone http://

github.com/shaunuk/picar. If you

haven’t got Git, install it with sudo apt-

get install git.

This will download the custom

software for driving the car, but we still

need the web server and some other bits

before we can start burning rubber…

02 Download and install
Node.js

We now need to get the awesome Node.

js and its package tool, the Node package

manager (npm). Type sudo wget http://

nodejs.org/dist/v0.10.21/node-

v0.10.21-linux-arm-pi.tar.gz. This

will download a fairly recent version of

Node.js – the version Raspbian has in

its repositories is way too old and just

03 Confi gure Node.js
To make it easy to run from

everywhere, we will create symbolic

links for Node and npm binaries. In the

terminal, type sudo ln -s /var/www/

node-v0.10.21-linux-arm-pi/bin/

node /bin/node and then sudo ln

-s /var/www/node-v0.10.21-linux-

arm-pi/bin/npm /bin/npm. Then,

to get the extra modules, type npm

install socket.io node-static

socket.io adafruit-i2c-pwm-driver

sleep optimist

04 Get to know the project
Now we have everything, you

should see three fi les: the server (app.js),

the client (socket.html) and the jQuery

JavaScript library for the client. The

server not only drives the servos, but it

is a web server and sends the socket.

html fi le and jQuery to the browser when

requested – it’s a really neat and simple

setup and just right for what we’re trying

to achieve.

05 Test the servos
Our handy little program (app.js) has a special mode

just for testing. We use two keywords here: beta for servo 0

(steering) and gamma for servo 1 (motor control). Type node

app.js beta=300. You should see the front wheels turn. Now the

numbers need experimenting with. On our example, 340 was left,

400 was centre and 470 was right. Do the same for the motor by

typing node app.js gamma=400 and take note of the various

limits of your car.

06 Confi gure sensible defaults
Now you know what your car is capable of, we

can set the defaults in app.js and socket.html. Edit app.js

and fi nd the section that says ‘function emergencyStop’.

Adjust the two numbers to your car’s rest values. Then open

socket.html and adjust the predefi ned values under ‘Defi ne

your variables here’.

07 Going for a spin
We’re almost ready to try it out, but you need to know the

IP address of your Pi car, so type ifconfig at the terminal. Then

fi re up the app by typing node app.js. Now grab the nearest

smartphone or tablet, making sure it’s on the same network

as your Pi. Open the web browser and go to http://[your IP

address]:8080/socket.html. You should get an alert message

saying ‘ready’ and as soon as you hit OK, the gyro data from your

phone will be sent to the car and you’re off!

Above You need to adjust some of the variables to control your
particular remote controlled car set-up

doesn’t work with the new technologies

we’re about to use. Extract the node

package by typing sudo tar -xvzf
node-v0.10.21-linux-arm-pi.tar.gz.

Step 05

Step 07 Below All you need to fi nish off your project is
access to a smartphone or tablet

42

HARDWARE

43

BUILD A RASPBERRY PI-CONTROLLED CAR

socket.html
<html>
<head>
<script src=”jquery-2.0.3.min.js” language=”javascript”></
script>
<script src=”/socket.io/socket.io.js”></script>
<meta name=”viewport” content=”user-scalable=no, initial-
scale=1.0, maximum-scale=1.0;” />
<script>

//------ Define your variables here
var socket = io.connect(window.location.hostname+’:8080’);
var centerbeta = 400; //where is the middle?
var minbeta = ‘340’; //right limit
var maxbeta = ‘470’; //left limit
var multbeta = 3; //factor to multiply the raw gyro figure
by to get the desired range of steering
var centergamma = 330;
var ajustmentgamma = 70; //what do we do to the angle to get
to 0?
var mingamma = 250; //backwards limit
var maxgamma = 400; //forward limit
var multgamma = 1; //factor to multiply the raw gyro figure
by to get the desired rate of acceleration
window.lastbeta=’0’;
window.lastgamma=’0’;

$(function(){
 window.gyro = ‘ready’;
 alert(‘Ready -- Lets race !’);
});
window.ondeviceorientation = function(event) {
 beta = centerbeta+(Math.round(event.beta*-1)*multbeta);
 if (beta >= maxbeta) {
 beta=maxbeta;
 }
 if (beta <= minbeta) {
 beta=minbeta;
 }
gamma = event.gamma;
 gamma = ((Math.round(event.gamma)+ajustmentgamma)*
multgamma)+ centergamma;
//stop sending the same command more than once
send = ‘N’;
if (window.lastbeta != beta) { send = ‘Y’ }
if (window.lastgamma != gamma) { send = ‘Y’ }
window.lastbeta=beta;
window.lastgamma=gamma;
if (window.gyro == ‘ready’ && send==’Y’) { //don’t send
another command until ready...
 window.gyro = ‘notready’;
 socket.emit(‘fromclient’, { beta: beta, gamma: gamma });
 window.gyro = ‘ready’; }}

app.js

//declare required modules
var app = require(‘http’).createServer(handler)
 , io = require(‘socket.io’).listen(app)
 , fs = require(‘fs’)
 , static = require(‘node-static’)
 , sys = require(‘sys’)
 , PwmDriver = require(‘adafruit-i2c-pwm-driver’)
 , sleep = require(‘sleep’)
 , argv = require(‘optimist’).argv;
 app.listen(8080);

//set the address and device name of the
breakout board
pwm = new PwmDriver(0x40,’/dev/i2c-0’);

//set pulse widths
setServoPulse = function(channel, pulse) {
 var pulseLength;
 pulseLength = 1000000;
 pulseLength /= 60;
 print(“%d us per period” % pulseLength);
 pulseLength /= 4096;
 print(“%d us per bit” % pulseLength);
 pulse *= 1000;
 pulse /= pulseLength;
 return pwm.setPWM(channel, 0, pulse);
};
//set pulse frequency
pwm.setPWMFreq(60);
//Make a web server on port 8080
var file = new(static.Server)();
function handler(request, response) {
 console.log(‘serving file’,request.url)
 file.serve(request, response);
};
console.log(‘Pi Car we server listening on port 8080 visit
http://ipaddress:8080/socket.html’);
lastAction = “”;
function emergencyStop(){
 pwm.setPWM(0, 0, 400); //center front wheels
 pwm.setPWM(1, 0, 330); //stop motor
 console.log(‘###EMERGENCY STOP - signal lost or shutting
down’);
}
if (argv.beta) {
 console.log(“\nPerforming one off servo position move
to: “+argv.beta);
 pwm.setPWM(0, 0, argv.beta); //using direct i2c pwm module
 pwm.stop();
 return process.exit();
}
if (argv.gamma) {
 console.log(“\nPerforming one off servo position move
to: “+argv.gamma);
 pwm.setPWM(1, 0, argv.gamma); //using direct i2c pwm module
 pwm.stop();
 return process.exit();
}
//fire up a web socket server
io.sockets.on(‘connection’, function (socket) {
 socket.on(‘fromclient’, function (data) {
 console.log(“Beta: “+data.beta+” Gamma: “+data.gamma);
 //exec(“echo ‘sa “+data+”’ > /dev/ttyAMA0”, puts); //using
http://electronics.chroma.se/rpisb.php
 //exec(“picar.py 0 “+data.beta, puts); //using python
adafruit module
 pwm.setPWM(0, 0, data.beta); //using direct i2c pwm module
 pwm.setPWM(1, 0, data.gamma); //using direct i2c pwm module
 clearInterval(lastAction); //stop emergency stop timer
 lastAction = setInterval(emergencyStop,1000); //set
emergency stop timer for 1 second
 });
});
process.on(‘SIGINT’, function() {
 emergencyStop();
 console.log(“\nGracefully shutting down from SIGINT
(Ctrl-C)”);
 pwm.stop();
 return process.exit();
});

We’ll harness the natural movement of your
hand and wirelessly drive the vehicle

Full code listing

Left This robotic arm is one of the most used
ones and there are tonnes of guides for it

Below One of these buttons controls the light
on the end of the robotic arm, while the other
two open and close its gripper

Components list
 Raspberry Pi Model B

 Maplin Robotic Arm Kit With

 USB PC Interface

 MPU-6050 Six-Axis Gyro

 and Accelerometer

 3 Mini Push Button Switches

 Veroboard

 Velcro strap

 1m Ribbon Cable

Veroboard Veroboard is great
to tidy up wires in projects like this,
where they get in the way but can’t
really be run through a breadboard

Robot Arm Available from Maplin
Electronics and OWI Robotics, the arm
comes with software for control even
before you get the MPU-6050 involved

MPU-6050 Containing a MEMS
accelerometer and a MEMS gyroscope,
this sensor reads the x, y and z axis
channels with 16-bit ADC conversion

44

HARDWARE

Another idea is having the arm be
completely brain controlled

How I made:
Robot Arm
Get to grips with natural motion control

What first inspired you to begin your

robot arm project?

The robot arm itself was one I’d seen

years ago and I really wanted it because

it’s something you can control yourself –

it really captured my young imagination.

I was volunteering at a science museum

down here in Harlow and this club based

around the Raspberry Pi sprung up, and I

bought the robot arm because I wanted it.

So then I had the Raspberry Pi thing going

on at the same time and thought, why not

meld the two?

I had this complicated system of key

presses to get it to do anything, which

was a bit boring, and then James Dali

(one of the people who helps out with

the club) gave me the idea of shoving an

accelerometer on the top of it to give an

idea of where it is. I took that and thought,

‘What if I had the accelerometer on me

and sort of used it to mirror the motion of

my hand?’ So I looked around, searched

up the accelerometer he was using (the

MPU-6050) and then found it for about

£5 on eBay – it’s normally about £30 from

SparkFun but I’m on a student budget…

A lot of the code I’ve used is borrowed

but open source, and people have said

it’s fine, so then I went through and had

two programs – one that could control

the arm, one that took the input in from

the accelerometer – and kind of just

smushed them together. It’s not that nice

to look at, but it works and that’s all that

really matters.

So what exactly are you reading with

that MPU-6050?

There’s the gyroscope and the

accelerometer in the code I’d found –

you can use one or the other, but the

gyroscope is very good for degrees

over time and it tends to drift, while

the accelerometer is good for sudden

turns and for measuring gravity. If you

compare the two to each other then you

can get a rough angle all of the time, so

it’s essentially the accelerometer and

the gyroscope used together to correct

the faults with one or the other. It’s got

two axes of motion – pitch and roll.

Take us through the code itself.

So in the fi rst bit it fi nds where the

actual I2C interface is and there’s a quick

setup – I’ve got three buttons on there

to control the gripper and the lights, so

it sets those up – and then there’s a bit

which is using the USB library to fi nd the

robot arm, then spitting it out if that’s an

issue. There are a couple of defi nitions

for some functions to actually move

the arm, so it’s a little bit easier – each

motor direction is a different binary

number – and then there are more

defi nitions for setting up reading data

from the accelerometer and a bit of

maths for making sure the gyro and

the accelerometer are both giving the

correct angle. Then there’s this while

loop with a try inside it that is just pulling

the accelerometer for data, spitting out

the maths stuff , before just checking

that the angle given is within a certain

range. If it is, move this motor left (for

example), or if a button is pressed then

it turns a light on. The only problem I’ve

had with it is that to actually move it, it

requires a change in angle – so there’s

not a continuous thing. I have to wave my

hand a little bit, but there’s that degree

angle and if I trip it then it’ll move around.

Have you considered adding any more

forms of control?

Yeah, I’ve done a lot of research into this.

In terms of other ways to control it, I quite

like the intuitiveness of it – to rotate

and move this arm you are moving your

own arm, so that’s something I’ve been

focussing on and trying to get even more

intuitive. Trying to get some sort of – I

bought an Arduino at some point – trying

to build an actual robotic hand and then

spreading out from there. Eventually,

my big plan – many, many years in the

future – is to have an entire sort of human

body that is controlled by the movements

of the user, but that’s a very large plan

which I haven’t put too much into just

yet! But essentially, the prototype that

people have done before is sort of having

pot sensors – potentiometers – on

the fingers just to measure the actual

rotation and closing of the fist, then

having that represented with servos

and then possibly doing that with actual

pieces of string to sort of emulate the

tendons. So you’d have a single servo, or a

couple of servos, in an arm bit that would

pull string which would close each finger

in turn.

Another idea, which seems to be

one of the most viable, is having it

completely brain controlled… There’s

a fair amount of interest in reading

brain activity – you can do it with the

NeuroSky, for example. There’s quite a

nice open source project which I might

end up using because it has four inputs,

so you can measure at least two things

at once and that seems to be a fairly

interesting place to go. It’s expensive

though, and if you’re going open source

then they have a lot of warnings on the

websites saying that you do this at your

own risk, this is not a medical product,

you may fry your brain…

What is the next step then?

Further projects would probably be

replacing the motors. Because it’s

motor-driven, it’s timing-based, so

having something with servos instead

where I can have a defi nite angle would

be a lot more useful, a lot more precise

and wouldn’t tend to go… one of the

problems with it is that if you tell it to

keep going in one direction, it will keep

going in one direction whether it wants

to or not, and there’s this awful grinding

of gears as it attempts to go in one

direction and can’t. So that will probably

be a new arm, a new robot, trying to get

it to be a bit more nice-looking and a bit

more precise.

Joseph
Thomas is a
student helping to
run a Raspberry Pi
club from a science
museum in Harlow,
where they have
worked on projects
ranging from a robot
arm to a portable Pi.

Like it?
The robot arm that
Joseph is using can
be bought from
Maplins in the UK
(bit.ly/1Da9BrT)
or ordered from
Adafruit elsewhere
in the world (bit.
ly/1yXlDQt). There
are many guides
online to get you up
and running, such
as this one:
bit.ly/1AKd0OU.

Further
reading
NeuroSky has a
whole product
family dedicated
to EEG and ECG
biosensors,
including the
popular MindWave
headsets (neurosky.
com), and there
are a few hacks
available too (bit.
ly/1C7w0SP).
OpenBCI is a
burgeoning open
source project
dedicated to brain-
computer interfaces
(openbci.com).

45

HOW I MADE: ROBOT ARM

46

HARDWARE

Finally create a more powerful and capable
HTPC using the Raspberry Pi 2 and the excellent
OpenELEC project

Make a Raspberry
Pi 2 HTPC

We know people who just have a Raspberry Pi for XBMC,

now called Kodi. It’s a great idea and a great use for the Pi

– it works just well enough that you can easily play media

locally or over the network. The biggest issue came with

GUI response on the original Model Bs, and a lack of USB

ports for connecting up everything that you want.

While optimisation over the last few years has helped,

the leap to Raspberry Pi 2 has basically solved all of these

problems by giving you much more powerful hardware to

play with. So if you’re looking to upgrade or fi nally take the

plunge, this handy guide will help you create the perfect

Raspberry Pi 2 HTPC.

01 Choose the software
In the past, Pi HTPCs were just a choice between

RaspBMC and OpenELEC. However, RaspBMC is on a bit of a

hiatus and OpenELEC is your best bet for getting the most up-

to-date software. There’s not a massive difference between the

two, as they both run XBMC.

02 Get the software
Head over to openelec.tv and look for the Download

section. There’s a specifi c Raspberry Pi section which is split up

into original (ARMv6) Pi and the newer Raspberry Pi 2 (ARMv7).

Grab the image fi le from this page for the Pi 2.

What you’ll need
 OpenELEC openelec.tv

 HDMI cable

 USB IR receiver

 IR remote

 Case

 Dedicated power supply

 Optional USB storage

47

MAKE A RASPBERRY PI 2 HTPC

04 First boot
Plug in your Raspberry Pi, either to your TV or to

another screen just to begin with, and turn it on. OpenELEC

will resize the SD card partitions and write a few extra

programs before fi nally booting into Kodi.

03 Install to card
Open up the terminal and use fdisk -l to determine where

your SD card is located on your system. Something like /dev/sdb

or /dev/mmcblk0 will be ideal. Navigate to the image using cd and

install it with dd using:

 $ dd bs=1M if=OpenELEC-RPi2.arm-5.0.5.img of=/dev/

 mmcblk0

Above Kodi really is
designed to be used
with a remote, and
there are some great
guides to using them
on the OpenELEC
site: bit.ly/1B0AERv

Kodi does have the
ability to play live
TV via a TV tuner,
and you can also
record stuff as well
as long as you have
the local memory.
The main thing you’ll
need to invest in is a
compatible TV tuner,
a list of these is
available here:
bit.ly/1r3mEVj

Live TV

05 Confi gure Kodi
Go through the basic wizard to get through the

interface – if you are connecting via wireless you will need

to go to OpenELEC in the System menu and activate the

wireless receiver before selecting your network and then

entering your password.

06 Add network shares
You can stick a portable hard drive or USB stick into

the Pi for storage, but the best method is really to stream

over the network. Go to File manager under System and Add

source. Go to Browse and choose your network protocol to

browse the network or alternatively, add it manually.

07 Build your media centre
Placement of your Raspberry Pi is important. As it’s

going to be out all the time, we highly recommend getting a

case for it – the Pibow cases from Pimoroni are quite well

suited for this type of use as they are sturdy and can be

attached to the rear of some TVs.

08 IR sensors and controllers
Kodi can be controlled with a number of different

things – including USB game controllers and compatible IR

sensors. We’ve used FLIRC in the past, but if you have your Pi

behind the TV, you’ll need a sensor on a wire that can stretch

to a useful position.

09 Future updates
OpenELEC has the excellent ability to update itself

without needing you to reinstall it every few months, meaning

you won’t need to do much maintenance on it at all. Now you

can sit back and enjoy your media much easier than before.

48

HARDWARE

Flood-proof your basement in just 19 lines of code, or
easily tweak the project to create your own personalised
alarm system…

Make a tweeting
wireless fl ood sensor

Flooding saw hundreds of homes right

across the world underwater this year,

and many would have benefited from

having just that little bit extra warning.

In order to be better prepared for fl oods,

we’re going to show you how you can

prototype your own wireless fl ood sensor

in less than ten minutes. Building it

might give you just enough warning to

dash home from work, move valuable

items upstairs and take the lawnmower,

caravan and motorbike to higher ground.

Handily, it can also be used to detect

toilet fl ushes, water butt levels or any

liquid level rise or fall at all – so it’s not just

something fun to try out, it’s practical too!

Sending tweets
Sending a tweet used to be really easy, if

a little on the insecure side. These days

you need to register an application with

your Twitter account – you do have one,

don’t you? If not, go create one at www.

twitter.com. At fi rst this project can look

a little daunting, however it can be done

painlessly in less than fi ve minutes, if you

follow these steps closely!

01 Link Twitter to mobile
Make sure your Twitter account has a mobile phone

number associated with it. In your main Twitter account, click

the gears icon at the top-right and then ‘Mobile’ in the list. At

this stage, just follow the instructions on screen.

02 Set it all up
With your Twitter username and password, sign in

to https://apps.twitter.com and click on the button ‘Create

an application’. In the name fi eld we suggest you use your

Twitter account name, add a space and then write ‘test’. For

the description, just put ‘Test poster for Python’. Finally, for the

website you can put anything you like. For example, http://www.

mywebsite.com – but it’s important you don’t forget the ‘http://’.

03 Enable reading and writing
Since you want to be able to send tweets, click on

the ‘Settings’ tab, change to ‘Read and Write’ and then click

‘Update’. This might take a few seconds.

04 Generate codes
Now go back to the ‘Details’

tab. You will see that an ‘API key’ and

‘API secret’ are visible, and that there’s

a ‘Create my access token’ button.

Click that button to obtain all four of the

codes you’ll need. If you did this before

Step 2, or it still says ‘Read’, all you

have to do is click the button to recreate

these codes. It really is straightforward.

05 Remember the codes
Earlier on ‘API’ was called

‘consumer’, and you might have come

across this before in examples on the

web. We suggest copying the following

essentials into Notepad so they don't

get lost: API key, API secret, Access

token and the Access token secret.

What you’ll need
 Ciseco Raspberry Pi

 Wireless Inventors Kit
 shop.ciseco.co.uk/raswik

 Float sensor

 shop.ciseco.co.uk/fl oat-switch

 DC power supply between
 6v and 12v

Right The Wireless Inventors Kit enables
you to connect a Raspberry Pi to an Arduino

module from the other side of your house

49

MAKE A TWEETING WIRELESS FLOOD SENSOR

No RasWIK?
Not to worry, using different hardware

is always a possibility when playing

around with the Raspberry Pi. The

reason we chose to use the RasWIK is

simply because everything except the

float switch is in the box and preloaded

with software, making it much easier to

get up and running quickly. As a bonus

addition, this software is also available

to download for free.

To build this with a conventional

Arduino or clone, you’ll need a USB

cable and to leave it ‘wired’, or use

serial-capable radio modules such as

the Xbee or APC220. We are, after all,

only sending and receiving plain text.

The Arduino sketch used can be

downloaded from http://github.com/

CisecoPlc/LLAPSerial, while the SD

image for the OS we used is based on a

stock version of Wheezy, which can be

downloaded from http://bit.ly/SfhLLI.

01 Start simple
To get going with your flood

sensor, simply plug in the Slice of Radio

to your Pi and insert the preconfigured

Raspbian operating system.

02
Go to LX terminal
Power up the Raspberry Pi, log

in and type STARTX to start the desktop.

Double-click the LX Terminal and type

the following into the black window:

 minicom -D /dev/ttyAMA0 -b 9600

03 Make the connection
Connect the float switch to the XinoRF ground pin

(marked GND) and digital I/O pin2. Then, power up the XinoRF

(you will see a--STARTED– displayed in minicom)

04 Test the sensor sends messages
Wiggle the sensor up and down (you should get a--

D02HIGH– when the sensor position is up) and see the RXR LED

on the XinoRF flicker with each message sent.

05 Install Tweepy
Tweepy is an easy-to-use Python library that works

great for accessing the Twitter API. For more information or to

check out the documentation, visit https://pypi.python.org/

pypi/tweepy/2.2. Type in a shell window the following:

 sudo pip install tweepy

06 Put the sensor to work
Test your prototype using a regular saucepan of water.

If you want to put your flood sensor to real use then place it into

a waterproof box and ensure it is mounted securely.

Let’s set up how to talk to Twitter first

import tweepy, serial, time

API_key = "GWip8DF9yf0RYzjIlM6zUg"

API_secret = "Yjipapo56nhkS2SAWtx3M4PAit3HsvWZUYAOghcLn4"

Access_token = "2392807040-19lSoaVOmj8NTvJVteU8x265IPEw2GfY0cS7vuN"

Access_token_secret = "lV4u2ls4oeRZCAxcpaPQNzRDN0lSiUibY0MdCuYKk16Rl"

auth = tweepy.OAuthHandler(API_key, API_secret)

auth.set_access_token(Access_token, Access_token_secret)

api = tweepy.API(auth)

Open a com port (yours may differ slightly)

ser = serial.Serial('COM3', 9600)

An endless loop checking for sensor alerts

while True:

 SerialInput = ser.read(12)

 if SerialInput == 'a--D02HIGH--':

 TimeNow = datetime.datetime.now()

 DS = TimeNow.strftime('%H:%M:%S %d-%b-%Y')

 AlertText = 'ALERT: LLAP+ device -- flood sensor triggered @ ' + DS

 print (AlertText)

 api.update_status(AlertText)

 time.sleep(10) #stop fast re-triggering

 ser.flushInput()

Full code listing

Tweepy is an easy-to-use
Python library that works great
for accessing the Twitter API

50

HARDWARE

Take a toy, a Raspberry Pi and a PS3 controller; add a dash of Python
and some solder for the perfect remote-controlled gadget…

Build a Raspberry
Pi-powered Bigtrak

What you’ll need
 Bigtrak

 www.bigtrakxtr.co.uk/shop/bigtrak

 Breadboard and cables

 Motor driver bit.ly/1iOnFug

 USB Battery pack
 amzn.to/1h2PBiI

 PS3 DualShock controller

BUILD A RASPBERRY PI-POWERED BIGTRAK

The Raspberry Pi is a small, low-cost computer designed to

promote an interest in computing and programming – but it

doesn't have to be straight-laced computing. In fact, in this

article we’ll be showing you how you can use it to turn a Bigtrak

into a robot. That’s educational, right?

The Bigtrak is a toy that takes in a list of straightforward

commands (Go forwards, turn left, turn right) and then

executes them. To make things more interesting we’re going to

remove the existing circuitry and replace it with a Raspberry

Pi, using a small motor driver to safely control the motors

in the Bigtrak, which we’ll then set up to be controlled via a

PlayStation 3 DualShock controller.

Everything required on the software side comes pre-

installed on the latest Raspbian OS images, so all we need to

translate changes from the controller to the motors is a small

Python script that uses the Pygame and RPI.GPIO modules.

01
Opening up the Bigtrak – the easy bit
Before we can make any changes to the Bigtrak we need

to get inside. First, fl ip the Bigtrak upside down and remove the

nine screws from around the edge. These are mostly easy to get

at, however the ones on the front may require a more slender

screwdriver to reach them.

02
Opening up the Bigtrak – the fi ddly bit
The last two screws are located underneath the grey

grille on the back. This grille is held in place by four plastic

tabs that need to be pushed in while at the same time sliding

the grille away from the Bigtrak. This can be quite tricky as

there is limited space to get extra hands in to help out. It can

help to wedge some thin plastic items (eg a guitar pick) into

the sides to keep those two tabs unlocked, while using your

fi ngers to push in the bottom two tabs and slide the grille

upwards, allowing you to remove the screws.

03 Removing the top
Put the Bigtrak back onto its wheels then carefully

loosen the top and lift upwards. The lid is connected to the

base with a ribbon cable and a switch, so only pull the top up far

enough for you to tilt it to one side and expose the inside.

With the lid lifted up onto one edge, remove the screw

holding the switch in place and detach it from the lid. Next,

you need to unscrew the two screws on the PCB that hold the

ribbon cable in place and let it slip free.

With the switch and ribbon cable disconnected, the lid

should now come free and can fi nally be completely removed

from the base of the Bigtrak.

04 Cut the wires
Cut the wires leading to the main PCB. The ones for

the switch and power should be cut close to the PCB (so we can

reuse them later) whereas the ones to the LED and speaker can

be cut wherever you like.

05 Remove the engine
Turn the Bigtrak upside down and remove the four

screws holding the engine in place (this will reduce the chance

of soldering iron damage to the main body). Carefully turn the

Bigtrak back over and lift it up until the engine slips free.

Step 01

Step 03

51

52

HARDWARE

The wires need to be long
enough to reach the back of the
Bigtrak, so be generous!

08 Install the breadboard
The breadboard is going to be installed on top of the

battery compartment inside the Bigtrak, so the wires from the

motors should be brought to the back to the unit and cable-tied

into place. The wires to the batteries can also be brought back

to the same place to help keep things tidy.

09 Wire it all together
In order to easily connect the motors and batteries to

the breadboard we have soldered some modular connector

plugs to the ends of the cable, allowing them to just push

into place (these are available from www.maplin.co.uk/

modular-connectors-5348).

With the breadboard installed (sticking it into place

for support) we can now, after double-checking all the

connections, plug the motors and power into it. To know when

the motors are enabled (and reduce the chance of unexpected

movement), the LED can be connected to the breadboard so

that it lights up whenever the ‘standby’ pin is active, using a

resistor to ensure it doesn’t pull too much current and go ‘pop’.

10 Provide power
Power for the Raspberry Pi is supplied via a USB battery

pack that is installed on top of the engine and can be held

in place by a couple of cable ties or a Velcro strip. This type of

battery is typically sold as a portable mobile phone or iPad

charger – the one used here is rated at 8000mAh, able to

power the Raspberry Pi for up to eight hours.

07 Connect the motor driver
With the motors back in place we now need to build

up a circuit to drive it from the Raspberry Pi. We've used a

ribbon cable to connect the GPIO pins on the Raspberry Pi to

a breadboard, before connecting it up to a Dual Motor Driver

(http://proto-pic.co.uk/motor-driver-1a-dual-tb6612fng) to

actually drive the motors. This keeps the higher voltage the

motors require away from the sensitive GPIO pins.

The connections made on the breadboard are listed in the

table below. These values will be needed when writing the

software and may be different depending on the breakout

board you are using, and the Raspberry Pi revision.

With the PWMA and PWMB pins directly connected to the 3.3V

power rail, the motors will now always run at full speed for as

long as they’re active.

06 Rewire the motor
Remove the solder connecting the PCB to the motors (a

solder mop is useful here) and then remove the PCB. With the

PCB removed we can now attach wires to the motors in order to

drive them from the Raspberry Pi, as opposed to the on-body

commands. The wires will need to be long enough to reach the

back of the Bigtrak, so be generous – after all, it’s far easier to

trim long wires to length than replace short wires entirely!

Having installed all of the wires, you can now replace the

engine back into the Bigtrak.

RPi GIPO Motor Driver

24 AIN2

17 AIN1

18 STBY

21 BIN1

22 BIN2

Step 08

Step 10

BUILD A RASPBERRY PI-POWERED BIGTRAK

12
Connect to the Raspberry Pi – fi nal steps
With the top of the Bigtrak back on, the Raspberry

Pi can now be put in place, keeping the GPIO pins towards

the front to allow the ribbon cable to easily connect. As for

the battery pack, we’re holding it in place with cable ties

and sticky pads. In theory it’s possible to attach the bare

Raspberry Pi to the Bigtrak, however this can cause the SD

card to press against the edge and bend, so it’s recommended

to use a case to protect the Raspberry Pi.

Connect the ribbon and power cable to the Raspberry Pi,

turn it on and it’s now ready to be told what to do. For setting

up the software it may be easier to connect up a keyboard and

monitor to the Raspberry Pi at this point.

13 Connect the PS3 controller
This should be a simple case of plugging the PS3

controller into one of the USB ports, as all the software to

support it is included in the default Raspbian OS image and it

will be automatically detected as a joystick. To confi rm that the

PS3 controller has been detected, run lsusb and checked that

it appears in the resulting list.

14 Run the software
Now with the system all set up, it should just be a

simple case of copying the ‘bigtrak.py’ fi le found on this

issue’s disc onto your Raspberry Pi and running it. As the

script accesses the GPIO pins, it will need to be run as the

superuser, so launch it using:

 sudo python bigtrak.py

Now we can control the Bigtrak using the analogue sticks!

Moving the left stick will control the left motor and moving

the right stick will control the right. So, to move forwards push

both sticks up, pull both down to go backwards and push one

up and one down to rotate on the spot.

If the analogue sticks are not controlling the Bigtrak as

expected, double-check the GPIO connections to make sure

that they are all as expected.

15 Next steps
Now that you have a solid base for

your Raspberry Pi robot, you can make

further adjustments to it. Possible next

steps could be: add a USB Bluetooth

adaptor so the PS3 controller can

be connected wirelessly; replace

the breadboard with a PiPlate

or ‘Slice of Pi’ add-on board,

allowing the Raspberry Pi to be

installed inside the Bigtrak; connect

up the RaspberryPi camera and a USB

WiFi adaptor to stream video as you drive

around; or add a robot arm!

11 Connect to the Raspberry Pi – adding cables
As the Raspberry Pi will be mounted on the top of the

Bigtrak, we need to run the ribbon and power cable through

the top of the case. To do this, turn the top of the Bigtrak upside

down and release the front two catches that hold the dark grey

plastic in place – this provides a big enough gap to feed the

ribbon cable and USB power cable through. Make sure that

the red edge of the ribbon cable correctly matches up with the

connector on the breadboard to save yourself from having to

twist the cable inside the case.

Step 12

Step 11

53

54

HARDWARE

The Pi Zero itself has
no audio jacks but
Pimoroni has come to
the rescue

Put the Pimoroni pHAT DAC together with
a Pi Zero to create a networked Hi-Fi

Build your own networked
Hi-Fi with a Pi Zero

We will show you how to create a high-quality networked

music player that takes advantage of the UK’s online

radio stations, Linux’s popular Music Player Daemon, and

a responsive web-server to control it all. The full-sized

Raspberry Pis have two built-in audio outputs: audio over HDMI

cable and a 3.5mm headphone jack that can suffer interference

and noise. The Pi Zero itself has no audio jacks but Pimoroni has

come to the rescue and built a high-quality DAC (digital audio

converter) using the same chip as the Hi-Fi berry (PCM5102A).

01 Soldering the headers
The pHAT DAC comes with a

40-pin header, which you will need to

solder. We consider a fl ux pen, work-

lamp and thin gauge 60/40 solder

essential for this. An optional RCA jack

can also be bought to give a phono-

lead output for older stereos.

02 Install drivers
The DAC relies on I2C, so we

have to load some additional kernel

modules. If you are running Raspbian

then you can type in the following for

a one-script installation over secure

HTTP:

 curl -sS https://get.pimoroni.com/

phatdac | bash

While HTTPS provides a secure download,

curious types may want to review the

script before running it.

03 Installing Music Player
Daemon (MPD)

Now install the MPD package and

enable it to start on boot. MPD will be

the backbone of the project providing

playback of MP3s and internet radio

stations. The MPC (client) software

is also installed for debugging and

setting up initial playlists.

 sudo apt-get install mpd mpc

 sudo systemctl enable mpd

04 Clone and install pyPlaylist
web-server

pyPlaylist is a responsive (mobile-

ready) web-server written with Python

& Flask web framework. Once it has

been confi gured, it will give us a way

of controlling our networked Hi-Fi

through a web-browser. The following

code on the next page will install

pyPlaylist on Raspbian:

What you’ll need
 Github repository (http://github.com/alexellis/
pyPlaylist)

 pimoroni pHAT DAC £10-12 (pimoroni.com)

 Soldering iron, flux & solder

 Auto-starting on Raspbian
In Raspbian/Jessie the controversial systemd software was added,
giving a highly modular way of managing start-up scripts amongst
other things. While systemd confi guration fi les are now best
practice, they can take time to fully understand. For that reason
we would suggest using cron to start the script on reboot as a
temporary measure.

crontab -e

@reboot /usr/bin/python /home/pi/pyPlaylist/app.py

55

BUILD YOUR OWN NETWORKED HI-FI WITH A PI ZERO

07 Starting the web-server
Now that we have some stations, we can run the web-

server from the pyPlaylist directory. Then open up a web browser

to start playing a radio station. The following command reveals

your IP address on Raspbian:

 $./raspbian_get_ip.sh

 192.168.0.20

Once you know the IP address, connect to the URL in a web-

browser on port 5000, i.e.

http://192.168.0.20:5000/

08 Add a custom music playlist
Now put together a sub-directory with your music files

under /var/lib/mpd/music/ and ensure that mpd:audio has access

to read it. Then we: update mpd’s database, clear out the current

playlist and add in all the tracks from the new directory (ambient)

finally saving it as a new playlist.

 mpc update

 mpc clear

 mpc ls ambient | mpc add

 mpc save ambient

09 Finishing up
Now your music player is functioning, all that’s left to

do is to add some speakers, obviously! Almost anything with a

RCA or 3.5mm input source will work for this purpose. That part

we will leave up to you. To take a look at the code here in full,

check out github.com/alexellis/pyPlaylist. Enjoy the tunes!

We wrote pyPlaylist
with the Python
flask framework
which is an ideal
starting-point for
simple RESTful
websites. The
front-end code
saves the screen
from completely
reloading by using
jQuery to update
the song or radio
information.
Bootstrap has
been employed
to make the
pages responsive
(compatible with
your PC, phone and
tablet). The code
has been released
under GPL, so why
not fork the code
and tweak it to your
own needs?

pyPlaylist
project

 sudo pip install flask python-mpd2

 cd ~

 git clone https://github.com/alexellis/pyPlaylist

 cd pyPlaylist

 ./raspbian_install.sh

05 Choosing the radio stations
We have put together a list of popular radio stations in the

UK which can be run into MPD with the add_stations.sh file. Edit

this file or find your own from http://radiofeeds.co.uk.

 cd ~/pyPlaylist

 ./add_stations.sh

06 Reviewing the stations
Each station is added into its own playlist – the mpc ls

command shows which playlists are available:

 $ mpc ls

 BBC6Music

 BBCRadio1

 BBCRadio2

 BBCRadio4

 CapitalXtra

 KissFM

If you want to remove one of the stations then type in the following:

 mpc rm BBC6Music

56

HARDWARE

Take your Raspberry Pi, HDMIPi and Screenly and
turn them into a beautiful digital photo frame

Make a digital
photo frame

Digital signage is a huge market in modern times, and

increasingly we are seeing digital advertising in the public

space – be it on street billboards, shopping centres and even

in some city taxis. Screenly is an exciting piece of software

from Wireload Inc that has set out to reduce the barriers to

entry of the digital signage market by employing a Raspberry

Pi as its main hardware component for the individual signage

nodes. With the powerful VideoCore IV graphics processor at

the heart of the Pi and its low electrical power consumption,

using it as a digital signage platform is a no-brainer.

Our expert has been using Screenly a lot recently for some

projects and it truly is a really great piece of software. He was

also one of the fi rst backers of HDMIPi on Kickstarter, and when

his reward arrived recently it occurred to him that, together

with Screenly, it would make the perfect home-brew digital

photo frame and another great Raspberry Pi-based hardware

project. In this tutorial, we will show you how to assemble this

powerful hardware/software combination for yourself.

01 Order your items
If you haven’t already got them

in your Raspberry Pi collection, you will

need to order all of the items from the

“What you’ll need” list. The HDMIPi is

currently only compatible with Model B

of the Raspberry Pi, although a Model

B+ version is in the works (the B+

does actually work with HDMIPi, but

unfortunately cannot fi t into the case).

Pretty much any USB keyboard will

work with Screenly, including wireless

ones, so you do not need to worry about

a mouse for this tutorial as it will all be

done from the command line.

Finally, a speaker is only necessary

if you intend to play videos from the

display with sound as well.

What you’ll need
 Raspberry Pi Model B

 HDMIPi kit

 Class 10 SD Card

 5.25V Micro USB power

 supply

 USB keyboard

 Wi-Fi dongle

 Internet connection

57

MAKE A DIGITAL PHOTO FRAME

04 Flash image to SD Card (Linux)
It’s worth noting the value of having a Linux machine

at your disposal (or a spare Raspberry Pi and SD card reader)

to download the ZIP fi le in Step 03. This is typically the easiest

way to unzip the fi le and copy the image across to your SD

card. Assuming the disk isn’t mounted, open a terminal

session and type:

 unzip -p /path/to/screenly_image.zip | sudo dd

 bs=1M of=/dev/sdX

Make sure that you replace /path/to/screenly_image.zip with

the actual path.

05 Flash image to SD Card (Other OS)
If you do not have another Linux machine handy, or

a card reader for your Raspberry Pi, you can still do this from

other popular operating systems. On Windows you should use

Win32 Disk Imager and follow the easy to use GUI. From Mac

OS X you have the options of using the GUI-based software

packages PiWriter and Pi Filler, or running some code from the

command line. Visit www.screenlyapp.com/setup.html for

more info.

06 Insert SD card and peripherals
Once the Screenly image has been successfully

transferred to your SD card, you will need to insert it into the

Raspberry Pi within your HDMIPi casing.

It is a good idea to connect your Wi-Fi dongle and keyboard

at this point. Take a look at the image at the top of this

page to see where the slots are in relation to the casing. A

wired network is also required for the initial setup and for

confi guring the Wi-Fi connection.

07 Boot up your Raspberry Pi
The HDMIPi driver board has a power output for the

Raspberry Pi which means you only need one power supply for

this setup. Plug it in and wait for it to boot into the Screenly splash

screen. An IP address (of format http://aaa.bbb.ccc.ddd:8080)

should be displayed here, which will allow you to gain access to the

management dashboard.

03 Download Screenly OSE
Now that you have the hardware all ready to go we need

to download the Screenly OSE SD card image. This is only a 3.7GB

image file, however it may not fit on some 4GB SD cards so we

would recommend a minimum of 8GB, for extra space for all your

pictures and videos. Visit bit.ly/1wLKIRQ and download the ZIP file

from one of the mirrors under the “Getting started” heading.

02 Assemble your HDMIPi
The HDMIPi comes as a do-it-yourself kit rather than

a polished product. Not only does this make it cheaper for you

to buy, but it also gives it a more hack-like feel in its Pibow-

esque acrylic layer case. It is not hard to assemble, but in

case you get stuck there is a fantastic assembly video here:

http://hdmipi.com/instructions.

HDMIPi is a
collaboration
between Cyntech
and Alex Eames
from RasPi.TV. They
wanted to bring a
cheap HD resolution
HDMI screen to the
market that will
reduce the cost of
having a dedicated
monitor for your
Raspberry Pi. They
took to Kickstarter
to launch their idea
(kck.st/17zyaQg)
and there was a huge
response to this
project from both
within and outside
the Raspberry Pi
community. Over
2,500 people from
all over the world
enabled them to
smash their £55,000
target, and the
campaign fi nished
with over £260,000.
UNICEF even
thought they were
good enough to use
in their educational
projects in Lebanon
(bit.ly/ZDpO8Z).

History of
HDMIPi

Above The reverse
view of HDMIPi,

showing GPIO and
connector cutouts

58

HARDWARE

08 Disable Screenly video output
Load the IP displayed on the splash screen on the

browser of a different computer (you won’t be able to do it

directly from the same Pi). The Screenly OSE dashboard should

now load. Once inside the dashboard, move the slider for Big

Buck Bunny to the OFF position or delete the asset entirely.

09 Enter the command line
Once you have disabled the Big Buck Bunny

trailer from the web interface, you should now be able

to enter the command line easily and you can do this by

pressing Ctrl+Alt+F1 on the attached keyboard at any

time. Alternatively, you can access the command line

over SSH using the same IP address as shown previously

on the splash screen.

10 Run the update script
The image fi le we downloaded from the website is

actually just a snapshot release and does not necessarily

include the latest Screenly OSE code, as the code updates

are made more regularly than the image. It is therefore

good practice to run an upgrade to the latest version using the

built-in script. You can run the following command:

 ~/screenly/misc/run_upgrade.sh

11 Confi gure Raspberry Pi
Once you are successfully at the command line, you need

to type sudo raspi-config to enter the settings and then select

‘1 Expand root fi le system’ to make sure you have access to all of

the space on the SD card. Then, change the time zone (option 4

and then 12) so that it is correct for your location. If your screen

has black borders around the edge you may also need to disable

overscan (option 8 and then A1). We would also recommend

changing the default password to something other than

raspberry to stop any would-be hackers from easily accessing

the Raspberry Pi via SSH (option 2). Once complete, exit without

restarting by selecting Finish and then No.

Above Screenly Pro
can manage multiple
screens and has
cloud storage too

12 Enable and set up Wi-Fi
As Screenly runs on top of Raspbian, the Wi-Fi setup

is essentially the same as the standard command line

setup within the OS. In order to do this you need to edit the

interfaces fi le using sudo nano /etc/network/interfaces

and then type in the following code, replacing ssid and

password with the actual values:

 auto lo

 iface lo inet loopback

 iface eth0 inet dhcp

 allow-hotplug wlan0

 auto wlan0

 iface wlan0 inet dhcp

 wpa-ssid “ssid”

 wpa-psk “password”

 iface default inet dhcp

Then exit and save by hitting Ctrl+X, then Y and then Return.

In this tutorial we
have used the open
source version
of Screenly –
Screenly OSE. This
is a fantastic bit
of software and a
great addition to
the open source
ecosystem. At this
point, some of you
may be dreaming
of huge remote-
managed display
screen networks
and the good news
is that this is entirely
possible with
Screenly Pro. This
is completely free
for a single display
screen and 2GB of
storage, and it has
larger packages for
purchase starting
at two screens right
up to 130+ screens.
It also adds a lot of
additional features
not seen in Screenly
OSE – fi nd out more
about those on the
Screenly website
(bit.ly/1EXl92p).

Screenly
Pro Edition

59

16 Place in situ and enjoy!
Once you have got Screenly all set up and loaded all of

your favourite pictures and videos onto it via the web interface,

it is now time to enjoy the fruits of your labour! Mould the spider

stand (if you have one) into shape by taking the middle two legs

at the top and bending them downwards and backwards. Then

spread the front-middle legs a bit wider to give a good base and

shape the outer legs at the top and bottom to support the screen.

You are then ready to give it its permanent home – our expert’s is

on the mantelpiece over the fi replace!

17 Other project ideas
In this tutorial we have looked at just one fairly basic

application of Screenly and the HDMIPi. You could use this

powerful open source software to run your digital signage empire,

share screens in schools and clubs, or as a personal dashboard

using a suitable web page. Whatever you make, please don’t forget

to take pictures and send them to Linux User & Developer!

14 Upload pictures to Screenly
Once again, you will need to visit the Screenly OSE web

interface by entering the IP address into another computer.

Since you are now using a wireless connection, the IP address

may be different to the previous one. You need to select the

‘Add Asset’ option at the top right-hand side, which should

launch a pop-up options screen. Select Image from the drop-

down box and you then have the option of either uploading the

image or grabbing it from a URL using the corresponding tabs.

Enter the start date and end date of when this image should

appear, and how long it should appear on screen for, then press

Save. Repeat this step for each of the pictures.

15 Test with video and more
Pictures are great, but Screenly also allows you to display

videos (with audio if you wish) and web pages, which really is a

huge benefi t. This is perfect if you want to enhance your digital

photo frame even further or perhaps display the local weather

and news to keep yourself informed. Plug in your speaker – we

would recommend The Pi Hut portable mini speaker (available

from bit.ly/1xEpBNZ) or anything similar.

Above Once fully confi gured, load
your pictures and video to complete your
digital photo frame!

13 Test the connection
The easiest way to test the Wi-Fi connection is to shut

down the Raspberry Pi using sudo shutdown -h now and then

remove the wired network connection and reboot the Raspberry

Pi by removing and reattaching the microUSB power connector. If

the Wi-Fi connection has worked, you should now see the splash

screen with IP address again.

The default Screenly
image is essentially
some additional
software running
on top of Raspbian
OS. This means that
SSH is enabled by
default (it’s why we
changed the default
password in Step 11)
so it’s now possible
to access the
command line, as
well as the Screenly
dashboard, from
outside of your LAN.
We recommend
setting a static IP
for your Screenly-
powered Raspi
from your router
settings and then
setting up SSH with
keys on your Pi, and
port forwarding
on your router
for ports 22 and
8080. The Screenly
dashboard has no
login so anyone
can access it, but
an authentication
feature is imminent.

Access
Screenly
from afar

MAKE A DIGITAL PHOTO FRAME

Minecraft means many things to many people, and to

Raspberry Pi users it’s supposed to mean education. Not

everyone knows, though, that you can still have fun and play

Minecraft as you normally would.

Using Raspberry Pi, it is also the cheapest way to get

a fully-functional version of Minecraft up onto your TV.

However, in its normal state, just being on a TV isn’t the end of

it. Using all the features and functions of the Pi, we can take

it to a state more fi tting of a TV by making it into a hackable,

moddable Minecraft console.

In this tutorial, we will show you how to set it up in terms of

both software and hardware, how to add a game controller to

make it a bit better for TV use, and we’ll even give you some

example code on how to mod it. Now, it’s time to get building,

so head to Step 1.

What you’ll need
 Raspberry Pi 2

 Latest Raspbian image
raspberrypi.org/downloads

 Minecraft Pi Edition
pi.minecraft.net

 Raspberry Pi case

 USB game controller
 (PS3 preferable)

60

HARDWARE

Create a full-functional, Pi-powered games console that you can
play Minecraft on and learn how to program too

Build a Raspberry Pi
Minecraft console

01 Choose your Raspberry Pi
Before we start anything, everything we plan

to do in this tutorial will work on all Raspberry Pi

Model Bs with at least 512 MB of RAM. However, Minecraft: Pi

Edition can chug a little on the original Model Bs, so we suggest

getting a Raspberry Pi 2 to get the most out of this tutorial.

02 Prepare your Raspberry Pi
Minecraft: Pi Edition currently works on Raspbian. We

recommend you install a fresh version of Raspbian, but if you

already have an SD card with it on, the very least you should do is:

 sudo apt-get update && sudo apt-get upgrade

05 X setup
If you have a fresh Raspbian install and/or you have

your install launch into the command line, you need to set it to

load into the desktop. If you’re still in the desktop, open up the

terminal and type in raspi-confi g. Go to Enable Boot to Desktop

and choose Desktop.

03 Prepare Minecraft
If you’ve installed Raspbian from scratch, Minecraft

is actually already installed – go to the Menu and look under

Games to fi nd it there ready. If you’ve just updated your version of

Raspbian, you can install it from the repos with:

 $ sudo apt-get install minecraft-pi

04 Test it out
If you’ve had to install Minecraft, it’s best just to check

that it works fi rst. Launch the desktop, if you’re not already in

it, with startx and start Minecraft from the Menu. Minecraft:

Pi Edition is quite limited in what it lets you do, but it does make

room for modding.

Above Give
Minecraft: Pi Edition

a quick test before
you start building

the console

07 Minecraft at startup
For this to work as a console, we’ll need it to launch into

Minecraft when it turns on. We can make it autostart by going

into the terminal and opening the autostart options by typing:

 $ sudo nano /etc/xdg/lxsession/LXDE-pi/autostart

06 Set up Python
While we’re doing set up bits, we might as well modify

Mincecraft using Python for a later part of the tutorial. Open up

the terminal and use:

 $ cp /opt/minecraft-pi/api/python/mcpi ~/minecraft/

09 Turn off
For now, we can use the mouse and keyboard to shut

down the Pi in the normal way, but in the future you’ll have to start

turning it off by physically removing power. As long as you’ve exited

the Minecraft world and saved, that should be fine.

08 Autostart language
In here, you just need to add @minecraft-pi on the

bottom line, save it and reboot to make sure it works. This is a

good thing to know if you also want other programs to launch as

part of the boot-up process.

If you’ve installed Raspbian from
scratch, Minecraft is actually
already installed – go to the Menu
and look under Games to fi nd it

Minecraft: Pi Edition
hasn’t received an
update for a little
while, but it was
previously limited by
the original Model
B. Now with more
power, there may
be an update that
adds more to it, but
right now there’s no
indication of that. If
it does come though,
all you need to do is
update your Pi with:
sudo apt-get update
&& sudo apt-get
upgrade.

Updates to
Pi Edition?

61

BUILD A RASPBERRY PI MINECRAFT CONSOLE

62

Aaron Hicks at
Solid Technologies
designed this
Minecraft case for
the Raspberry Pi
and shared it on
GrabCAD. We’ve
uploaded our slightly
modifi ed version to
FileSilo.co.uk along
with your tutorial
fi les for this issue.
All you need to do is
send the STL fi le to
a 3D printing service
– many high street
printing shops have
at least a MakerBot
these days – and
they will 3D-print
the case for you.
It should only cost
around £15.

3D-print
a case

10 The correct case
In this scenario, we’re hooking this Raspberry Pi up to a

TV, which means it needs a case so that there’s less chance of

damage to the components from dust or static. There are many

good cases you can get – we are using the Pimoroni Pibow here

as you can mount it to the back of the TV. Alternatively, you could

get really creative and 3D-print your own case, as you can see on

page 58. Check out the boxout just to the left.

11 Find the right power supply
Getting power to the Raspberry Pi 2 so that it runs properly

can be tricky if you’re using a USB port or a mobile phone charger

– the former will be underpowered and the latter is not always

powerful enough. Make sure you get a 2A supply, like the offi cial

Raspberry Pi one.

12 Go wireless
We understand that not everyone has an ethernet cable

near their TV, so it may be a good idea to invest in a Wi-Fi adapter

instead. There is a great list of compatible Wi-Fi adapters on the

eLinux wiki: elinux.org/RPi_Verifi edPeripherals.

13 Mouse and keyboard
Now that we have the Raspberry Pi ready to be hooked up,

you should look at your controller situation – do you want to be

limited by the wires or should you get a wireless solution instead?

We will cover controller solutions over the page, but it’s worth

considering now.

14 Get ready for SSH
It will be easier to create and apply scripts to Minecraft

by uploading them via the network rather than doing it straight

on the Pi. In the terminal, find out what the IP address is by using

ifconfig, and then you can access the Pi in the terminal of another

networked computer using the following:

 ssh pi@[IP address]

15 Have a play
At this stage, what we have built is a fully-functional

Minecraft console. Now, at this point you could start playing if

you so wish and you don’t need to add a controller. You can fl ip

over to page 62 now if you want to begin learning how to mod your

Minecraft and do a bit more with it to suit your needs. However,

if you do want to add controller support then carry on and take a

look at Step 16.

Getting power to the Raspberry Pi 2
so that it runs properly can be tricky if
you’re using a USB port

HARDWARE

63

BUILD A RASPBERRY PI MINECRAFT CONSOLE

16 Add controller support
Make sure the controller input functions are installed

on the Raspberry Pi. To do this, ssh into the Raspberry Pi like

we did in Step 14 (where ‘raspberry’ is the password) and install

the following package:

 $ sudo apt-get install xserver-xorg-input-joystick

17 Controller mapping
We have a controller map for the PS3 controller that

you can download straight to your Pi, and with a bit of tweaking

can fi t most USB controllers as well. Go to the controller

confi guration folder with:

 $ cd /usr/share/X11/xorg.conf.d/

18 Replace the controller mapping
We’ll remove the current joystick controls by using sudo

rm 50-joystick.conf and then replace by downloading a

custom confi guration using:

 $ sudo wget http://www.linuxuser.co.uk/wp-content/

 uploads/2015/04/50-joystick.conf

19 Reboot to use
After a reboot to make sure everything’s working, you

should be able to control the mouse input on the console. R2 and

L2 are the normal mouse clicks and can be used to navigate the

Minecraft menu to access the game.

20 Go full-screen
So far you may have noticed that Minecraft is running

in a window – you can click the full-screen button to make it fi ll

the screen, however you then heavily limit your mouse control.

Thanks to the controller, you can get around that. As soon as you

load the game, make sure you use the sticks for movement and

the d-pad for selecting items in the inventory.

R2 Right click (hit)L2 Right click (hit)

R1 Cycle held item

Right stick
Camera

Start
Escape

Select
Escape

PS Button
Connect

controller

L3 / R3
Descend

while fl ying
Left stick

Movement

L1 Cycle held item

Directional
buttons

Movement

 Inventory

 Inventory

 Escape

X Jump

Unfortunately, Xbox
360 controllers work
slightly differently
with Linux. As they
use their own drivers
that are separate
to the normal
joystick drivers we
used for the PS3
pad and other USB
controllers, a 360
controller doesn’t
work as a mouse and
is harder to assign
specifi c functions to.
This makes it tricky
to use in a situation
such as this.

Xbox
controllers

Here’s the full
layout of the
buttons used
by the PS3
controller by
default – you can
change them in
the script that you
download in Step 18

Controls

64

HARDWARE

We program Minecraft to react in
Python using the API that comes with
Minecraft Pi – it’s what we moved to
the home folder earlier

Here is some example code, and explanations for it, so that you can
learn how to program in Python and mod Minecraft Pi

Mod your Minecraft

We program Minecraft to react in python using the API that

comes with Minecraft: Pi Edition – it’s what we moved to the

home folder earlier on. Now’s a good time to test it – we can do

this remotely via SSH. Just cd into the Minecraft folder in the

home directory we made, and use nano test.py to create our

test file. Add the following:

from mcpi.minecraft import Minecraft

from mcpi import block

from mcpi.vec3 import Vec3

mc = Minecraft.create()

mc.postToChat(“Hello, Minecraft!”)

Save it, and then run it with:

 $ python test.py

“Hello, Minecraft!” should pop up on-screen. The code imports

the Minecraft function from the files we moved earlier, which

allows us to actually use Python to interact with Minecraft,

along with the various other functions and modules

imported. We then create the mc instance that will allow us

to actually post to Minecraft using the postToChat function.

There are many ways you can interact with Minecraft in this

way – placing blocks that follow the player, creating entire

structures and giving them random properties as they’re

spawned as well. There are very few limits to what you can do

with the Python code, and you can check out more projects

here: https://mcpipy.wordpress.com.

Over the page, we have a full listing for a hide and seek

game that expands on the kind of code we’re using here,

where the player must find a diamond hidden in the level, with

the game telling you whether you’re hotter or colder. You can

write it out from scratch or download it to your Pi using the

following commands:

 $ wget http://www.linuxuser.co.uk/tutorialfiles/

 Issue134/ProgramMinecraftPi.zip

 $ unzip ProgramMinecraftPi.zip

 $ cp Program\ MinecraftPi/hide_and_Seek.py ~/minecraft

Check out the annotations to the right to see how it works.

Below You can see the hidden diamond just
to the left of the crosshair at the centre of
this screenshot

65

BUILD A RASPBERRY PI MINECRAFT CONSOLE

from mcpi.minecraft import Minecraft

from mcpi import block

from mcpi.vec3 import Vec3

from time import sleep, time

import random, math

mc = Minecraft.create()

playerPos = mc.player.getPos()

def roundVec3(vec3):

 return Vec3(int(vec3.x), int(vec3.y), int(vec3.z))

def distanceBetweenPoints(point1, point2):

 xd = point2.x - point1.x

 yd = point2.y - point1.y

 zd = point2.z - point1.z

 return math.sqrt((xd*xd) + (yd*yd) + (zd*zd))

def random_block():

 randomBlockPos = roundVec3(playerPos)

 randomBlockPos.x = random.randrange(randomBlockPos.x - 50, randomBlockPos.x + 50)

 randomBlockPos.y = random.randrange(randomBlockPos.y - 5, randomBlockPos.y + 5)

 randomBlockPos.z = random.randrange(randomBlockPos.z - 50, randomBlockPos.z + 50)

 return randomBlockPos

def main():

 global lastPlayerPos, playerPos

 seeking = True

 lastPlayerPos = playerPos

 randomBlockPos = random_block()

 mc.setBlock(randomBlockPos, block.DIAMOND_BLOCK)

 mc.postToChat(“A diamond has been hidden - go find!”)

 lastDistanceFromBlock = distanceBetweenPoints(randomBlockPos, lastPlayerPos)

 timeStarted = time()

 while seeking:

 playerPos = mc.player.getPos()

 if lastPlayerPos != playerPos:

 distanceFromBlock = distanceBetweenPoints(randomBlockPos, playerPos)

 if distanceFromBlock < 2:

 seeking = False

 else:

 if distanceFromBlock < lastDistanceFromBlock:

 mc.postToChat(“Warmer ” + str(int(distanceFromBlock)) + “ blocks away”)

 if distanceFromBlock > lastDistanceFromBlock:

 mc.postToChat(“Colder ” + str(int(distanceFromBlock)) + “ blocks away”)

 lastDistanceFromBlock = distanceFromBlock

 sleep(2)

 timeTaken = time() - timeStarted

 mc.postToChat(“Well done - ” + str(int(timeTaken)) + “ seconds to find the diamond”)

if __name__ == “__main__”:

 main()

Full code listing
Import
Here we’re importing the necessary modules
and APIs to program Minecraft. Most
importantly are the files in the mcpi folder
that we copied earlier

Locate
We connect to Minecraft with the first line,
and then we find the player’s position and
round it up to an integer

Range finding
Calculate the distance between the player
and diamond. This is done in intervals later
on in the code, and just compares the co-
ordinates of the positions together

Creation
Create a random position for the diamond
within 50 blocks of the player position that
was found earlier

Start
This is the main loop that actually starts the
game. It asks to get the position of the player
to start each loop

Notification
This part sets the block in the environment
and pushes a message using postToChat to
the Minecraft instance to let the player know
that the mini-game has started

Checking
We start timing the player with timeStarted,
and set the last distance between the player
and the block. Now we begin the massive
while loop that checks the distance between
the changing player position and the fixed
diamond. If the player is within two blocks of
the diamond, it means they have found the
block and it ends the loop

Message writing
If you’re two or more blocks away from the
diamond, it will tell you whether you’re nearer
or farther away than your last position check.
It does this by comparing the last and new
position distance – if it’s the same, a quirk in
Python means it says you’re colder. Once it’s
done this, it saves your current position as
the last position

Success
It takes a two-second break before updating
the next position using the sleep function. If
the loop has been broken, it tallies up your
time and lets you know how long it was before
you found the diamond. Finally, the last bit
then tells Python to start the script at
the main function

66

HARDWARE

Visualise music in
Minecraft with the
PianoHAT
Combine code, Minecraft and the PianoHAT to play music and
create a visualisation of the melody

The Raspberry Pi was designed to provide several ways to

interact with the world through sensors and activators.

In the past, we have looked at using the GPIO interface pins

to communicate with several devices at once. This is not the

only way to work with the world at large, however. This month,

we will look at one of the other mechanisms available, the I2C

bus. I2C (Inter-Integrated Circuit) bus was invented by Philips

Semiconductor, with version 1 having come out in 1992.

The design is for short connection paths, and supports multiple

masters and multiple slaves where messages on the bus are

delivered using device addresses. Messages have a START

section and a STOP section, wrapped around the core of the

message. The three types of messages that you can send

are a single message where a master writes data to a slave, a

single message where a master reads data from a slave, or a

combined message where a master sends at least two read

or two write messages to one or more slaves. Now that we

have a little bit of an idea of what the I2C bus is, how can you

use it with your Raspberry Pi? The fi rst step is to activate the

bus within the Linux kernel. By default, the relevant kernel

modules are blacklisted and not loaded at boot time. If you are

using a newer version of Raspbian, you can use the utility ‘sudo

raspi-confi g’ and select the ‘Advanced Options’ section to set

correct options. If you are using an older version or simply wish

to make the changes

manually, it is a bit

more complex. In

order to change

this, you will need

to edit the fi le ‘/etc/

modprobe.d/raspi-

blacklist.

What you’ll need
 Raspbian set to

 command line

 RaspCTL

Even though the
Raspberry Pi makes
a great demo
and evaluation
system, using it
in practice might
lead to suboptimal
performance.
This is caused by
the unique bus
architecture: both
ethernet ports
must share the USB
bandwidth. On the
RPi 2, this problem
is mitigated by the
signifi cantly higher
CPU performance.

For large
networks, using
an X86 based
embedded system
tends to yield better
results. Single-
board computers
like the BananaPi are
another alternative,
but tend to crash
when confronted
with specifi c
ethernet packages.

Pis make
bad
routers

67

VISUALISE MUSIC IN MINECRAFT WITH THE PIANOHAT

01 Getting started
Pimoroni has made it extremely easy to install

the software for your PianoHAT. Assuming you have

not connected your HAT, simply attach the board and boot

up your Raspberry Pi. Load the LX Terminal and update the

software; type:

 $ sudo apt-get update

 $ sudo apt-get upgrade

Type the following line to install the PianoHat libraries:

 $ sudo curl -sSL get.pimoroni.com/pianohat | bash

Follow the instructions displayed. This will now download the

required libraries and a selection of programs to try.

02 Basic events
The software install comes with a set of four example

programs to get you started and demonstrate the features and

functions of the PianoHAT. In terms of the code for the Piano,

there are four basic events that you can control, these are:

on_note – triggers when a piano key is touched and plays

a note. on_octave_up – triggers when the Octave Up key is

touched and raises the notes by one octave.

on_octave_down – triggers when the Octave Down key is

touched and decreases the notes by one octave.

on_instrument – triggers when the Instrument key is touched

and changes the sound from a piano to drums.

Full code listing

import pianohat

import pygame

import time

import signal

import glob

import os

import re

from mcpi import minecraft

mc = minecraft.Minecraft.create()

global move

x,y,z = mc.player.getTilePos()

print x,y,z

move = x

BANK = ‘./sounds/’

FILETYPES = [‘*.wav’,’*.ogg’]

samples = []

files = []

octave = 0

octaves = 0

pygame.mixer.pre_init(44100, -16, 1, 512)

pygame.mixer.init()

pygame.mixer.set_num_channels(32)

patches = glob.glob(os.path.join(BANK,’*’))

patch_index = 0

if len(patches) == 0:

 exit(‘You need some patches in {}’.format(BANK))

def natural_sort_key(s, _nsre=re.compile(‘([0-9]+)’)):

 return [int(text) if text.isdigit() else text.lower() for

text in re.split(_nsre, s)]

def load_samples(patch):

 global samples, files, octaves, octave

 files = []

 print(‘Loading Samples from: {}’.format(patch))

 for filetype in FILETYPES:

 files.extend(glob.glob(os.path.join(patch,filetype)))

 files.sort(key=natural_sort_key)

 octaves = len(files) / 12

 samples = [pygame.mixer.Sound(sample) for sample in files]

 octave = octaves/2

pianohat.auto_leds(True)

def handle_note(channel, pressed):

 global move

 channel = channel + (12*octave)

 if channel < len(samples) and pressed:

 print(‘Playing Sound: {}’.format(files[channel]))

 print channel

 ### Saves the channel number / note as a variable to

compare to block

 Block_number = channel

 samples[channel].play(loops=0)

 ###Sets block infront of you###

 mc.setBlock(move, y+3, z+3, Block_number)

 move = move + 1 ###add one to the x pos to move blocks

along in a line

def handle_instrument(channel, pressed):

03 Simple Piano
To get used to the PianoHAT and its features, load the

simplepiano program. This is exactly as the name describes: a

simple piano, perfect for beginners.

Navigate to the folder home/pi/Pimoroni/pianohat, and

press F4 to start a Terminal session (The HAT requires root

access and this method provides it). Next, load the piano

program, type sudo python simple-piano.py and then press

Enter. Wait a while for the program to run and then play yourself

a little tune. Use the Octave buttons to move the note range

higher or lower, and press the Instrument button to toggle

between drums and piano.

68

HARDWARE

05 Teach yourself to play
This neat little program teaches you to play a well

known melody (can you guess what it is?). Run the program

and the LED for each required note is lit up, indicating that

this is the key to press. Press the key and the note is sounded.

Once you have done this the next LED lights up; press this key

and the note plays, and so on. Follow the LEDs to learn how to

play the melody. You can use this program to experiment and

create your own melody / song trainer.

06 Minecraft
The new Raspberry Pi OS image comes with Minecraft

and the required Python library pre-installed. If you are using

an old OS version, it will be worth downloading and updating

to either the new Jessie or Raspbian image downloadable

here: https://www.raspberrypi.org/downloads/

Go to the start menus and load Minecraft from the

programming tabs. Be aware that the Minecraft window is a

little glitchy when full size and it is recommended to reduce the

size so you can view both your Python code and the game at the

same time. Let’s look at some simple Minecraft hacks that will be

used in the final Musical Blocks program.

07 Importing the modules
Load up your preferred Python editor and start a

new window. You need to import the following module using

from mcpi import minecraft and mc = minecraft.Minecraft.

create(). These create the program link between Minecraft

and Python. The mc variable enables you to type ‘mc’ instead

of having to type out the long-winded minecraft.Minecraft.

create() each time you want to use an API feature. Next import

the time module to add a small delay when the code runs.

 from mcpi import minecraft

 mc = minecraft.Minecraft.create()

 import time

Below We’ve gone
for a simple CPU
temperature gauge,
but the possibilities
really are endless

08 Finding your location
When playing Minecraft you inhabit a three

dimensional environment which is measured by the ‘x’ axis,

left and right, the ‘y’ axis up and down and the ‘z’ axis for

forward and backwards. As you move along any of these axes,

your position is displayed at the top left of the screen as a set

of three co-ordinates. These are extremely useful for checking

where the player is and can be collected and stored using pos

= mc.player.getPos(). This code returns the position of your

player and is applied later to the music blocks. Try the simple

program below for an example of how the positioning works:

09 Grow some flowers
Each block in Minecraft has its own ID number, for

example, flowers have the ID number 38. The code x, y, z =

mc.player.getPos() gets the player’s current position in the

world and returns it as a set of co-ordinates: x, y, z. Now you

know where you are standing in the world, blocks can be placed

using mc.setBlock(x, y, z, flower). Use the code below to place

flowers as you walk around the world. Try changing the ID

number to place a different block.

 flower = 38

 while True:

 x, y, z = mc.player.getPos()

 mc.setBlock(x, y, z, flower)

 time.sleep(0.1)

10 Creating musical blocks
Now you are au fait with the basics of Minecraft and the

PianoHAT, let’s combine them to create a musical block. This

uses the ID of each note in the PianoHAT and assigns it to each

individual block. For example, the block ID 2 is grass and this

corresponds to the note value of C. As you play the piano, the

relevant block is displayed in the Minecraft world. Open the LX

Terminal and type sudo idle to open Python with root privileges.

Click file open and locate the simple-piano program, then open

it and save it as a different name. You will use this as a template

for the musical block program. Now import the modules and

Minecraft API starting on line 11 of the program.

 import mcpi.minecraft as minecraft

 mc = minecraft.Minecraft.create()

The piano samples
are located and
stored in the
Pimoroni/pianohat/
sounds folder.
Create your own
sounds such as you
singing the note or
playing it on another
instrument and
you can create your
own personalised
piano synth.

Make
your own
sounds

 from mcpi import minecraft

 mc = minecraft.Minecraft.create()

 import time

 while True:

 time.sleep(1.0)

 pos = mc.player.getPos()

 print pos.x, pos.y, pos.z

69

11 Finding your positon again
Under the line you just entered and before the line that

begins “BANK”, line 19, create a global variable called move;

this stores the ‘x’ position of the player. Now find your player’s

position, line two, using the code you learnt in step 8. On line

three, print the position – this is useful for checking that the

position and block are functioning correctly. These values

are printed to the Python console window. Now you have the

position of your player in the Minecraft world.

 global move

 x,y,z = mc.player.getTilePos()

 print x,y,z

 move = x

12 Assign a note to a block
Next scroll down to the handle-note function, this begins

on line 52 of the final program. After the function name, on the

next line, add the global move variable from the previous step.

This is the ‘x’ position of the player. The next line reads channel

= channel + (12*octave): ‘channel’ refers to the number of the

note. Move to the If under this line and create a new variable

called Block_number which will store the channel number, the

number of the note to be played.

 def handle_note(channel, pressed):

 global move

 channel = channel + (12*octave)

 Block_number = channel

13 Set the block
In step nine you learned how to place a block: use

this code to place the block that corresponds to the channel

number you stored in the previous step. Within the if statement

on line 56 under the samples[channel].play(loops=0), add the

code to place a block, mc.setBlock(move, y+3, z+3, Block_

number) This places the block into the Minecraft world.

 if channel < len(samples) and pressed:

 print(‘Playing Sound: {}’.format(files[channel]))

 print channel

 samples[channel].play(loops=0)

 ###Sets block in front of you###

 mc.setBlock(move, y+3, z+3, Block_number)

14 The block explained
In the previous step you used the code

mc.setBlock(move, y+3, z+3, Block_number) to play a note and

place the block. This is achieved by saving the note number, for

example, note five, into a variable called Block_number. When

the program is run, the code finds your x positon and saves this

in a variable called move. This is combined with the set Block

code to place the block at your x position. In order for you to

view the musical blocks, each block is moved across three and

forward three spaces from your original starting position.

15 Moving the block line forward
Once the block is placed, increment the x position

by one; this has the effect of moving the next block forward

one space. As you play the notes on the Piano, a line of

corresponding blocks is built, creating a simple graphical

visualisation of the melody you are playing. You will notice that

16 Posting a message to the MC World
The last step is to post a message to the Minecraft world

to tell the player that the Piano and musical blocks are ready.

On line 86 add the code mc.postToChat(“Welcome to musical

blocks”). When you run your program you will see the message

pop up at the bottom of the world. Try changing your message or

use the same code-line to add other messages throughout the

game. Once the message is displayed the samples have been

loaded and your Minecraft Piano is ready.

 mc.postToChat(“Welcome to the music blocks”)

17 Running the music block
INow that you have completed the code save it. Open

Minecraft and create a new world. When this has finished

loading, press F5 in IDLE to run your program. Press a key on

the piano and look out for the block appearing just above your

head. Remember that as the player’s position is measured only

once at the beginning of the program, the blocks will always be

placed from the same starting reference position. Play your

melody to create a musical visualisation.

some of the blocks appear to be missing – one of the causes

is that there is no block ID number which matches the note

ID number. The second reason for a space is that some of the

materials are affected by gravity. For example, Sand, Water and

Mushrooms all fall down from the line leaving an empty space.

Under the line mc.setBlock(move, y+3, z+3, Block_number),

line 64, add the code, move = move + 1.

 mc.setBlock(move, y+3, z+3, Block_number)

 move = move + 1

Full code listing (cont.)

 global patch_index

 if pressed:

 patch_index += 1

 patch_index %= len(patches)

 print(‘Selecting Patch: {}’.format(patches[patch_

index]))

 load_samples(patches[patch_index])

def handle_octave_up(channel, pressed):

 global octave

 if pressed and octave < octaves:

 octave += 1

 print(‘Selected Octave: {}’.format(octave))

def handle_octave_down(channel, pressed):

 global octave

 if pressed and octave > 0:

 octave -= 1

 print(‘Selected Octave: {}’.format(octave))

mc.postToChat(“Welcome to music”)

pianohat.on_note(handle_note)

pianohat.on_octave_up(handle_octave_up)

pianohat.on_octave_down(handle_octave_down)

pianohat.on_instrument(handle_instrument)

load_samples(patches[patch_index])

signal.pause()

VISUALISE MUSIC IN MINECRAFT WITH THE PIANOHAT

70

72 Supercharge your Pi
Get the most out of your Raspberry Pi

Software

76 Create your own digital
assistant, part 1
Tell your computer what to do

78 Create your own digital
assistant, part 2
Continue this project by decoding audio

80 Create your own digital
assistant, part 3
Run the commands you’re giving your Pi

82 Run science experiments
on the Expeyes kit
Make use of this digital oscilloscope

86 Monitor CPU temperature
with Dizmo
Access the Internet of Things

Set up a
motion sensor

Supercharge your
Raspberry Pi

Program a
synthesiser

96

72

98
96 Turn your Pi into a motion

sensor with SimpleCV
Implement facial recognition into your Pi

98 Code a simple synthesiser
Write a simple synthesiser using Python

94 Remotely control your
Raspberry Pi
Employ your Pi as a media centre

92 Print wirelessly with your
Raspberry Pi
Breathe new life into an old printer

90 Talking on the I2C bus
Talk to the world with the I2C bus

71

Print documents
wirelessly

Monitor CPU
temperature

86

92

“Use your Raspberry Pi to test
out your coding skills and get

to grips with programming”

72

Get the most out of your Raspberry Pi with these
performance-enhancing tips and tricks

Supercharge
your Raspberry Pi

Your Raspberry Pi is plugged in. Raspbian is installed on

the SD card and you are right in the middle of setting up a

wireless print server or building a robot to collect your mail

from your doormat.

But are you truly getting the most from your little

computer? Do the components you’re using maximise the

potential of your Raspberry Pi or are they holding it back?

Perhaps you haven’t explored the full set of options in

Raspbian, or you’re running the entire OS from SD card,

something that can reduce SD card lifespan.

Various tools and techniques can be employed to

improve performance, from choosing the right hardware

to overclocking the CPU. You might even maximise storage

space on the Raspberry Pi’s SD card or all but replace it with a

secondary device to help improve speed.

Use these tips and tricks to reconfi gure your Raspberry Pi

setup and optimise software and hardware to ensure you get

the best performance for your projects.

01 Use better storage hardware
Your choice of storage media can have an impact on your

Raspberry Pi’s performance, regardless of the operating system.

A low capacity SD card with poor error correction, is going to be

slower than a larger card with greater resilience, so you need to

fi nd the right balance for your project and shop wisely.

SOFTWARE

73

SUPERCHARGE YOUR RASPBERRY PI

04 Expand the Raspbian partition
Maximising the partition affords the full capacity of

your SD card, which will increase the media’s lifespan (there

is more space to write too, so the same sectors aren’t being

overwritten as often).

With raspi-confi g running, use the arrow keys to select

expand_rootfs in the menu. Then wait briefl y while the

partition is resized.

03 Make the most of your storage
You’ll typically need 1-2GB of storage for your chosen

Raspberry Pi distro, so any remaining storage on your SD card will

be used for updates and data you create or save.

In Raspbian you can open a command line and run the

configuration utility to gain more space (only if your SD card’s

greater than 2 GB):

 sudo raspi-config

02 Choosing the best SD card
Various standards of SD card are available, with the

more expensive designed for better error correction. For the best

performance on your Raspberry Pi, choose an SDHC card with a

high rating. The same advice applies to MicroSD cards, which you

can use on your Raspberry Pi with an SD card adaptor or directly

insert into a Raspberry Pi B+.

Above There’s a
great guide to SD

cards at elinux.org/
RPi_SD_cards

It’s all too tempting
to boot up your
Raspberry Pi with
an image copied to
an SD card that you
just pulled out of
your DSLR or phone.
After all, they’re all
the same, right?
The chances are
that your chosen SD
card was one that
you had lying about
when you bought
your Raspberry Pi.
It might be good
enough but if you
want the best
performance, a high-
rated SDHC card
with plenty of space
is recommended.
Such media is
inexpensive and can
be bought online or
in supermarkets.
Just make sure
you’re buying a
known brand!

Buy rated
SD cards

05 Write data to RAM
Rather than reading and writing data to your SD card

– something that will eventually result in a deterioration of

reliability and performance – you can confi gure Raspbian to

write to the system RAM, which will speed things up slightly

and improve SD card performance.

This is achieved using fstab (fi le systems table), a system

confi guration available in most Linux distros.

06 Enable fstab in Raspbian
This is much like creating a RAM disk in Windows and

is almost as easy to setup. In the command line, enter:

 sudo nano /etc/fstab

Add the following line to mount a virtual fi le system:

 tmpfs /var/log tmpfs defaults,noatime,nosuid,mode=

 0755,size=100m 0 0

Follow this by saving and exiting nano (Ctrl+X), then safely

restarting the Pi:

 sudo shutdown -r now

74

08 Move your OS to a HDD
If you’re concerned about the lifespan of the SD card,

why not reduce your Raspberry Pi’s reliance on it? Instead of

using the SD card as a sort of budget SSD, change its role and

add a HDD or USB stick to run the operating system, leaving the

SD card for bootstrapping. This can give a marked performance

boost to the SD card.

09 Back up the SD card
Begin by creating a copy of your Raspberry Pi’s SD card.

Shut down, remove the card and insert it into your desktop

computer. In the command line, run:

 sudo dd bs=4M if=/dev/sdb of=~/backup.img

The path /dev/sdb represents the SD card. Copying should take

5-10 minutes. When complete, remove the SD card and connect

your USB device.

10 Copy Raspbian to USB
Using a blank Ext4-formatted USB thumb drive (or

external HDD) as the destination drive, enter:

 sudo dd bs=4M if=~/backup.img of=/dev/sdc

Leave the backup on your computer, just in case something

goes wrong. With an SD card and USB storage device sharing

an identical disk image, it’s time to consider what you’re going

to do next – create a faster Raspberry Pi.

11 Split the Raspbian partitions
Ideally, the boot partition should remain on the SD card

while the root fi lesystem is run from the external HDD or USB

thumb drive. Using your preferred partition manager (Disk Utility

is in most distros), unmount and delete the root fi lesystem from

the SD card, ensuring you have retained the boot partition. After

removing the SD card, connect your USB device and delete the

boot partition, taking care to leave the root fi lesystem intact.

Then resize the root fi lesystem on the USB device, making sure

that 10 MB remains.

Above Having your
fi lesystem on a USB
stick is great for
backups as well as
performance boosts

Speeding up your
Raspberry Pi by
migrating the root
fi lesystem to an
external USB drive
is a start, but what
sort of device should
you use for the best
performance? With
a USB thumb drive
you can add fl ash
storage up to 16
GB without running
into any signifi cant
problems (the
larger the drive, the
greater the current
is required to read/
write). Anything
larger is expensive
and unnecessary.
If you’re planning to
use an external HDD,
there are no power
issues as it will
have its own power
supply. As ever, your
choice should suit
your project.

Picking an
external
USB drive

07 Configure fstab for fast performance
Upon restarting, the virtual fi le system will be

mounted and /var/log on the RAM disk. Other directories that

can be moved to RAM include:

 tmpfs /tmp tmpfs defaults,noatime,nosuid,size=100m 0 0

 tmpfs /var/tmp tmpfs defaults,noatime,nosuid,size=30

 m 0 0

 tmpfs /var/log tmpfs defaults,noatime,nosuid,mode=0755,

 size=100m 0 0

 tmpfs /var/run tmpfs defaults,noatime,nosuid,mode=0755

 ,size=2m 0 0

 tmpfs /var/spool/mqueue tmpfs defaults,noatime,nosuid,m

 ode=0700,gid=12,size=30m 0 0

Add each to /etc/fstab in nano.

SOFTWARE

75

12 Identify the root fi lesystem
With this confi guration you’re going to have the SD card

and the external USB storage connected, so you need to tell

the Pi where the root fi lesystem is. Still on the desktop Linux

computer with your SD card inserted, run:

 sudo nano /boot/cmdline.txt

Find root=/dev/mmcblk0p2 (or similar) and change that to

read root=/dev/sda2 which is your external USB storage. Save

and exit.

13 Add other USB devices
You can now restart your Pi with the storage devices

attached, but as soon as you connect further USB media

you’ll suffer problems. Avoid this by installing gdisk:

 sudo apt-get update

 sudo apt-get install gdisk

Then run gdisk:

 sudo gdisk /dev/sdb

Enter ? to display the options and select Recovery and

Transformation options (experts only), followed by Load MBR

and Build Fresh GPT. Tap ? one last time and select ‘Write

Table to Disk’ and exit. Remove and replace the USB device

and run gdisk again. This time enter I and then 1 to display the

Partition Unique GUID.

14 Make your Pi fast & reliable
Make a note of the GUID and then switch to the SD

card. Reopen cmdline.txt and change root=/dev/mmcblk0p2

to root=PARTUUID=XXXXXX, where the numerical string from

the partition unique GUID should replace the XXXXXX. When

you’re done, save and exit. You can then start your Raspberry

Pi. Congratulations, your Raspberry Pi is now faster and more

reliable to use!

15 Boost performance with overclocking
Need more from your Raspberry Pi? It is possible to

overclock the computer, although you should be aware of the

risks inherent with this activity. You should also ensure that

your Raspberry Pi’s processor is suitably cooled – heatsinks

for the CPU, Ethernet controller and power regulator can be

purchased online.

16 Overclock your Raspberry Pi
Overclocking is available through raspi-confi g. Launch

from the command line and arrow down to the overclock

option. Four further options are available: Modest, Medium,

High and Turbo. With your ideal clock speed selected, exit

raspi-confi g and restart your Raspberry Pi to apply:

 sudo shutdown -r now

Now you will need to perform tests to see how stable it is

overclocked. Raspberry Pi founder, Eben Upton, suggests

running Quake 3 as a good stress test. Should the Pi fail to

boot, hold Shift to boot without overclocking, run raspi-confi g

and select a more modest overclock.

17 Run Raspbian without the GUI
Despite these changes, you may fi nd that the GUI

remains slow. If you fi nd yourself running a lot of commands in

bash, the best thing to do is disable launching into X. In raspi-

confi g, choose boot_behaviour and select the fi rst (default)

option to ensure your Pi boots to the command line. Should

you need the GUI, enter ‘startx’ in Terminal.

Overclocking
is potentially
dangerous to
any computer
system, which is
why it’s great that
the Raspberry Pi
developers have
included the facility
in their approved
operating system
and allowed its use
under warranty. If
you’re using this
feature, heatsinks
and water cooling
systems are
available for the
Raspberry Pi to
ensure you don’t
bake the CPU and
RAM when in use.

Overclock
with a
heatsink

Above Heat sinks
for the Pi are widely

available and usually
cost less than $10

SUPERCHARGE YOUR RASPBERRY PI

76

SOFTWARE

Create your own
digital assistant, part 1
Everyone would like to tell their computers
exactly what to do. Well with Python and a
Raspberry Pi, now you can

Everyone who has watched the Iron

Man movies has probably dreamt of

having their own artificially intelligent

computer system to do their every

bid and call. While Jarvis has massive

amounts of computing power behind him,

you can construct the front-end with very

modest resources. With a Raspberry Pi

and the Python programming language,

you can build your own personal digital

assistant that can be used as a front-end

to whatever massive supercomputing

resources that you use in your day-to-day

life as a playboy, philanthropist genius.

We will go over the basics that you will

need to know over the next few pages, so

that by the end of the series you should

be able to build your own rudimentary,

customised agent.

The fi rst step to interacting with the

humans around us is to listen for verbal

commands so that we know what we

need to process. You have several options

available to handle this task. To keep

things simple, we will be dealing only with

devices that are plugged into one of the

USB ports. With that stipulation you can

talk directly with the USB device at the

lowest level. This might be necessary if

you are trying to use something that is

rather unusual to do the listening, but

you will probably be better off using

something that is a bit more common. In

this case you can use the Python module

PyAudio. PyAudio provides a Python

wrapper around the low level cross-

platform library PortAudio. Assuming that

you are using something like Raspbian for

your distribution, you can easily install the

required software with the command:

 sudo apt-get install python-

 pyaudio

If you need the latest version you can

always grab and build it from source.

PyAudio provides functionality to both

read in audio data from a microphone,

along with the ability to play audio data

out to headphones or speakers. So we will

use it as our main form of interaction with

the computer.

The fi rst step is to be able to read

in some audio commands from the

humans who happen to be nearby. You

will need to import the ‘pyaudio’ module

In this and further
issues, we will
look at the parts
needed to make your
own voice control
software for your
projects. If you want
a virtual assistant,
one project is the
Jasper system
(jasperproject.
github.io). The
documentation on
the main website
has a description of
hardware to attach
to your Raspberry
Pi and a full set of
instructions for
installation and
confi guration. There
is a set of standard
modules included to
allow interaction with
various services.
Use the time, Gmail
or even the joke
module, and there
are also third-party
modules for you to
access. There is even
a developer API and
documentation to
help you add your
own functionality
to Jasper.

Voice
control

before you can start interacting with the

microphone. The way PyAudio works is

similar to working with fi les, so it should

seem familiar to most programmers.

You start by creating a new PyAudio

object with the statement p = pyaudio.

PyAudio(). You can then open an input

stream with the function p.open(…), with

several parameters. You can set the data

format for the recording; in the example

code we used format=pyaudio.paInt16.

You can set the rate in Hertz for sampling.

For example, we are using rate=44100,

which is the standard 44.1KHz sampling

rate. You also need to say how big a

buffer to use for the recording – we

used frames_per_buffer=1024. Since

we want to record, you will need to use

input=true. The last parameter is to

select the number of channels to record

on, in this case we will use channels=2.

Now that the stream has been opened,

you can start to read from it. You will

need to read the audio data in using the

same chunk size that you used when

you created the stream – it will look like

stream.read(1024). You can then simply

loop and read until you are done. There

are then two commands to shutdown the

input stream. You need to call stream.

stop_stream() and then stream.close(). If

you are completely done, you can now call

p.terminate() to shutdown the connection

to the audio devices on your Raspberry Pi.

The next step is to be able to send

audio output so that Jarvis can talk to

you as well. For this you can use PyAudio,

so we won’t have to look at another

Python module. To make things simple,

let’s say that you have a WAVE fi le that

you want to play. You can use the ‘wave’

Python module to load it. Once again, you

will create a PyAudio object and open a

stream. The parameter ‘output’ should

be set to true. The format, the number of

channels and the rate is all information

that will be derived from the audio data

stored in your WAVE fi le. To actually hear

Right Check out the
documentation to
see what Jasper can
do: bit.ly/1MCdDh4

77

CREATE YOUR OWN DIGITAL ASSISTANT

You need to import the pyaudio module

import pyaudio

First, we will listen

We need to set some parameters

Buffer chunk size in bytes

CHUNK = 1024

The audio format

FORMAT = pyaudio.paInt16

The number of channels to record on

CHANNELS = 2

The sample rate, 44.1KHz

RATE = 44100

The number of seconds to record for

RECORD_SECS = 5

Next, we create a PyAudio object

p = pyaudio.PyAudio()

We need a stream to record from

stream = p.open(format=FORMAT, channels=CHANNELS,

 rate=RATE, input=TRUE, frames_per_buffer=CHUNK)

We can now record into a temporary buffer

frames = []

for i in range(0, int(RATE / CHUNK * RECORD_SECS)):

 data = stream.read(CHUNK)

 frames.append(data)

We can now shut everything down

stream.stop_stream()

stream.close()

p.terminate()

If we want to play a wave file, we will need the wave module

import wave

We can open it, give a filename

wf = wave.open(“filename.wav”, “rb”)

We need a new PyAudio object

p = pyaudio.PyAudio()

We will open a stream, using the settings from the wave file

stream = p.open(format=p.get_format_from_width(wf.getsampwidth()),

 channels=wf.getnchannels(), rate=wf.getframerate(),

 output=True)

We can now read from the file and play it out

data = wf.readframes(CHUNK)

while data != ‘’:

 stream.write(data)

 data = wf.readframes(CHUNK)

Don’t forget to shut everything down again

stream.stop_stream()

stream.close()

p.terminate()

Full code listing

the audio you can simply loop through,

reading one chunk of data from the WAVE

file at a time and immediately writing out

to the PyAudio stream. Once you’re done

you can stop the stream and close it, as

you did above.

In both of the above cases, the

functions block when you call them

until they have completed. What are

the options if you want still be able

to do processing while you are either

recording audio or outputting audio?

There are non-blocking versions that

take a callback function as an extra

parameter called stream_callback. This

callback function takes four parameters,

named in_data, frame_count, time_info,

and status. The in_data parameter will

contain the recorded audio if input is

true. The callback function needs to

return a tuple with the values out_data

and flag. Out_data contains the data to

be outputted if output is true in the call

to the function open. If the input is true

instead, then out_data should be equal to

None. The flag can be any of paContinue,

paComplete or paAbort, with obvious

meanings. One thing to be aware of is that

you cannot call, read or write functions

when you wish to use a callback function.

Once the stream is opened, you simply

call the function stream.start_stream().

This starts a separate thread to handle

this stream processing. You can use

stream.is_active() to check on the current

status. Once the stream processing is

done, you can call stream.stop_stream()

to stop the secondary thread.

Now that we have covered how to get

audio information into and out of your

Raspberry Pi, you can start by adding this

functionality to your next project. In the

next step, we will look at how to convert

this audio information into something

usable by the computer by using voice

recognition modules. We will also look at

the different ways to turn text into audio

output using TTS modules.

78

SOFTWARE

Digital assistant, part 2:
speech recognition
In this second instalment, learn how to decode
your audio and figure out what commands are
being given by the humans around you

Previously we looked at how we could

have our Raspberry Pis listen to the

world around them. This is the first

step in building our own version of the

J.A.R.V.I.S system made famous in the

Iron Man movies. The next step is to try

and make sense of what we may have

just heard. In general, this is called

speech recognition and it is a very large

and active area of research. Every major

mobile phone operating system has

applications trying to take advantage

of this mode of human interaction.

There are also several different Python

modules available that can do this

speech-to-text (STT) translation step. In

this second article, we will look at using

Pocket Sphinx to do all the heavy lifting.

Sphinx was developed by Carnegie

Mellon University and is licensed under

a BSD licence, so you are free to add

any extra functionality that you may

need for specific tasks. Because of the

activity in this field, it is well worth your

time to keep track of all the updates and

performance improvements.

While you can download the source

code for all of these modules and build it

all from scratch, we are going to assume

that you are using one of the Debian-

based distributions, like Raspbian. For

these you can simply use:

 sudo apt-get install python-

 pocketsphinx

…to get all of the required files for the

engine. You will also need audio model

files and language model files in order

to get a translation in you language of

choice. To get the files needed for English,

you can install the packages:

 sudo apt-get install pocketsphinx-

 hmm-wsj1 pocketsphinx-lm-wsj

You may need to go outside the regular

package management system if you want

to process other languages. Then you

can simply start writing and using your

code straight away. To start using these

modules, you will need to import both

pocketsphinx and sphinxbase with:

import pocketphinx as ps

import sphinxbase

You can offload
the audio data
processing to
Google, accessing
the API directly over
HTTP by posting
your audio data to
the appropriate
URL. First install
the Python module
SpeechRecognition:

 pip install

SpeechRecognition

Now create an
instance of the
Recognizer object.
A Helper object,
called WavFile, will
take an audio file
and prepare it for
use by the Google
API. Then process
it with the record()
function and hand
this processed audio
in to the function
recognize(). When
it returns, you will
get a list of pairs of
possible texts, along
with a percentage
confidence level for
each possible text
decoding. Be aware
that this module uses
an unofficial API key
to do its decoding,
so for anything more
than small personal
testing you should
request your own
API key.

Offload
tasks

These modules are actually Python

wrappers around the C code that

handles the actual computational work

of translating sounds to text. The most

basic workflow involves instantiating a

Decoder object from the pocketsphinx

module. The Decoder object takes several

input parameters to define the language

files it is allowed to use. These include

‘hmm’, ‘lm’ and ‘dict’. If you use the above

packages used to handle English, then

the files you need will be in the directories

/usr/share/pocketsphinx/model/hmm/

wsj1 and /usr/share/pocketsphinx/

model/lm/wsj. If you don’t set these

parameters, then it tries to use sensible

defaults which usually work fine for

English language speech. This newly

created Decoder object can now be given

WAV files with data to process. If you

remember that previously, we saved the

recorded speech as a WAV file. In order

to have this audio recorded in the correct

format, you will want to edit the code from

the first tutorial and ensure that you are

recording in mono (using one channel, for

example), and recording at 16kHz with 16-

bit quality. To read it properly you can use

a file object and load it as a binary file with

read permissions. WAV files have a small

piece of header data at the beginning of

the file that you need to jump over. This

is done by using the seek function to

jump over the first 44 bytes. Now that

the file pointer is in the correct position,

you can hand the file object in to the

Decoder object’s decode_raw() function.

It will then go off and do a bunch of data

crunching to try and figure what was

said. To get the results, you would use the

get_hyp() function call. You get a list with

three elements from this function: a string

containing the best guess at the spoken

text, a string containing the utterance ID

and a number containing the score for

this guess.

So far, we’ve looked at how to use the

generic language and audio models

Right CMUSphinx
is used in cross-
platform, open
source projects like
ILA, the Intelligent
Learning Assistant

79

You first need to import the required modules

import pocketsphinx as ps

import sphinxbase

Next, you need to create a Decoder object

hmmd = ‘/usr/share/pocketsphinx/model/hmm/wsj1’

lmd = ‘/usr/share/pocketsphinx/lm/wsj/wlist5o.3e-7.vp.tg.lm.DMP’

dictd = ‘/usr/share/pocketsphinx/lm/wsj/wlist5o.dic’

d = ps.Decoder(hmm=hmmd, lm=lmd, dict=dictd)

You need to jump over the header information in your WAV file

wavFile = file(‘my_file.wav’, ‘rb’)

wavFile.seek(44)

Now you can decode the audio

d.decode_raw(wavFile)

results = d.get_hyp()

The most likely guess is the first one

decoded_speech = results[0]

print “I said “, decoded_speech[0], “ with a confidence of ”, decoded_speech[1]

To do live decoding, you need the PyAudio module

import pyaudio

p = pyaudio.PyAudio()

You can now open an input stream

in_stream = p.open(format=pyaudio.paInt16, channels=1, rate=16000,

 input=True, frames_per_buffer=1024)

in_stream.start_stream()

Now you can start decoding

d.start_utt()

while True:

 buf = in_stream.read(1024)

 d.process_raw(buf, False, False)

 results = d.get_hyp()

 # Here you would do something based on the decoded speech

 # When you are done, you can shut everything down

 break

d.end_utt()

Full code listing

for a particular language. But Pocket

Sphinx is a research-level language

system, so it has tools available to

enable you to build your own models.

In this way, you can train your code to

understand your particular voice with

all of its peculiarities and accents. This

is a long process, so most people will

not be interested in doing something so

intensive. However, if you are interested,

there is information available at the main

website (cmusphinx.sourceforge.net).

You can also defi ne your own models and

grammars to tell pocketsphinx how to

interpret the audio that it is processing.

Once again, effectively carrying out

these tasks will require more in depth

reading on your part.

If you want to process audio more

directly, you can tell Pocket Sphinx to

start processing with the function start_

utt(). You can then start reading audio

from your microphone. You will want to

read in appropriate sized blocks of data

before handing it in to pocketsphinx

– specifi cally to the function process_

raw() – and you will still need to use the

function get_hyp() to actually get the

translated text. Also, because your code

can’t know when someone has fi nished

a complete utterance, you will need

to do this from within a loop. On each

pass of the loop, read another chunk

of audio and feed it into pocketsphinx.

You then need to call get_hyp() again to

see if you can get anything intelligible

from the data. When you are done doing

this real-time processing, you can use

the function end_utt().

So far, we have covered how to record

your speech and how to turn that speech

into text. In the next tutorial, you will

learn how to take that translated speech

and actually take actions based on

how the system has been confi gured.

But even with only these two steps,

you could build yourself a nifty little

dictaphone or vocal note-taking system.

DIGITAL ASSISTANT, PART 2: SPEECH RECOGNITION

80

SOFTWARE

Digital assistant, part 3:
run other programs
This third and final article will cover how to
actually run the commands you are giving to
your Raspberry Pi

This is the last in our trilogy of articles

to help you build your own voice control

system. The first article looked at how

to listen for incoming commands. This

involved listening on a USB device and

also outputting audio feedback to a

user. The second article looked at how to

interpret those commands. This involved

using speech recognition libraries to

translate the recorded audio into text that

can be processed. This time, we will look

at how to actually run the commands that

were given. We will look at a few different

options to execute tasks and get work

done based on the interpreted speech.

If you have put together a system

based on the suggestions from the first

two articles, you should have a string

containing the text that was spoken to

your Raspberry Pi. But, you need to figure

out what command this maps to. One

method is to do a search for keywords.

If you have a list of keywords available,

you can loop through them and search

the heard string to see if any one of those

keywords exist within it as a substring.

Then you can execute the associated task

with that keyword. However, this method

will only find the first match. What

happens if your user accidentally includes

a keyword in their spoken command

before the actual command word? This

is the auditory equivalent to having fat

fingers and mistyping a command on the

keyboard. Being able to deal with these

errors gracefully is an ongoing area of

research. Maybe you can create a new

algorithm to handle these situations?

Let’s say that you have a series of

Python scripts that contain the various

tasks you want your system to be able

to tackle. You need a way to have your

system be able to run these scripts when

called upon. The most direct way to run

a script is to use execfile. Say you have

a script called do_task.py that contains

Python code you want to run when a

command is given; you can run it with:

 execfile(“do_task.py”)

Using this form, you can add command

line options to the string being handed

in. This will look in the current directory

for the script of that file name and run it

in the current execution context of your

main program. If you need to rerun this

code multiple times, call execfile each

time you do. If you don’t need the script

to run within the same context, use the

subprocess module. Import it with:

import subprocess

You can then execute the script like so:

subprocess.call(“do_task.py”)

This will fork off a subprocess of the

main Python interpreter and run the

A more Pythonic method is to
use classes and objects. You
can write a script that defines
a class that contains methods
for you to call when you need it

You may want your
system to check
your social media
accounts on the
Internet. There are
several Python
modules available
to handle this. Let’s
say that you want to
be able to check your
Facebook account.
Install the following
Python module:

 sudo apt-get

 install python-

 facebook

You can then use
import facebook to
get access to the
Facebook API. If
you’re a Twitter user,
install the python-
twitter Debian
package to use the
Twitter API. Email
is easier as long as
your email provider
offers IMAP or POP
access. You can then
import emails and
get voice control to
read unread emails
out to you. For the
Google fans, Google
has a Python module
that provides access
to the APIs for
almost everything
available; work with
your calendar, email
or fitness data.

Social
media

script there. If your script needs to

interact with the main program, this

is probably not the method that you

should use. Collecting output from a

call to do_task.py with subprocess

isn’t straightforward, so another way

of achieving the same thing is to use

the import statement. It also runs the

code in your script at the point the

import statement is called. If your

script only contains executable Python

statements, these get run at the point of

importation. In order to rerun this code,

you need to use the reload command.

The reload command doesn’t exist in

version three – so if you’re using that

particular Python version, a better

option is to encapsulate the code

contained in the script within a function.

You can then import the script at the

beginning of your main program and

simply call the relevant function at

the correct time. This is a much more

Pythonic method to use. If you have the

following contents for do_task.py:

def do_func():

 do_task1()

 do_task2()

You can then use it with the following

code within your main program:

import do_task

....

....

do_task.do_func()

....

An even more Pythonic method is to use

classes and objects. You can write a script

that defines a class that contains methods

for you to call when you need it.

What are the options if you want

to do something that isn’t achievable

with a Python script? In these cases,

you need to be able to run arbitrary

programs on the host system. The host

81

DIGITAL ASSISTANT, PART 3: RUN OTHER PROGRAMS

do_task.py

def do_func():

 print “Hello World”

main_program.py

You can import your own module to do tasks and commands

import do_task

You can then go ahead and run any included functions

do_task.do_func()

You can run system programs directly

import os

The exit code from your program is in the variable returncode

returncode = os.system(“/usr/bin/fetchmail”)

The subprocess module is a better choice

import subprocess

You can duplicate the above with

returncode = subprocess.call(“/usr/bin/fetchmail”)

If you want to get the output, too, you can use

returned_data = subprocess.check_output(“/usr/bin/fetchmail”)

Full code listing

Left The Jasper
project has some
great documentation
that might help guide
you further in terms
of hardware and
software choices

system in this case is your Raspberry

Pi. As a toy example, let us say you

need to download some emails using

the Fetchmail program. You can do

this in a couple of different ways. The

older method is to use the os.system()

command where you hand in a string. In

our example, this would look something

like the following:

os.system(“/usr/bin/fetchmail”)

You need to explicitly use os.wait() to be

told exactly when the task has fi nished.

This method is now being replaced by

the newer subprocess module. It gives

you more control over how the task gets

run and how you can interact with it. A

simple equivalent to the above command

would look like this:

subprocess.call(“/usr/bin/

fetchmail”)

It waits until the called program has

fi nished and returns the return code to

your main Python process. But what if

your external program needs to feed

in results to your main program? In

this case, you can use the command:

subprocess.check_output(). This is

essentially the same as subprocess.

call(), except when it fi nishes, anything

written out by the external program to

stdout gets handed in as a string object.

If you also need information written out

on stderr, you can add the parameter

stderr=subprocess.STDOUT to your call

to subprocess.check_output.

After reading these three articles, you

should have enough of the bare bones

to be able to build your own version of

the J.A.R.V.I.S system. You will be able

to fi ne-tune it to do basically anything

that you command it to do. So go forth

and order your machines around, and

have them actually listen to what you are

saying for once.

ExpEYES is a cheap digital oscilloscope with a signal generator and
other features, making it the ultimate tool for electronics

Run science experiments
on the ExpEYES kit

ExpEYES is a relatively unheard of but very impressive

hardware and software platform for science and

electronics experimentation, as well as a useful electronic

probing tool for makers and professionals alike. It is also

open source on both the hardware and software sides, which

makes it affordable and versatile.

ExpEYES is billed as a science and experimentation kit

but really it is much more than that – it is a fully-functioning

four-channel digital oscilloscope with an impressive

array of features. ExpEYES ships with a wealth of online

documentation in a variety of formats (graphics, user

guides, web content), including upwards of 50 suggested

experiments, and the kit itself contains all of the hardware

required to play with the interesting science of electronics

contained within the guide material.

The aim is to enable the learning of what can be complex

concepts of electronics in an easy and affordable way,

without getting bogged down in the arcane details. Paired

with our favourite little single-board computer, the Raspberry

Pi, you have an extremely powerful and affordable device.

01 Get the parts
ExpEYES is available to purchase from a variety of online

vendors, including CPC (http://cpc.farnell.com), for around £50.

It is possible to get the kits slightly cheaper from India or China

(see bit.ly/1H38EFC for other vendors worldwide), however it’s

likely to end up costing more due to higher shipping rates as well

as potential import fees and duties.

What you’ll need
 Raspberry Pi Model B

 ExpEYES kit
 bit.ly/1AR15dz

82

SOFTWARE

02 Open it up
The ExpEYES kit contains everything you need to get

underway, with over 50 documented experiments from the

ExpEYES website. The only other item that may come in handy

is a breadboard. You will also need a Raspberry Pi or other

computer with a USB port in order to run the digital oscilloscope

software and connect to ExpEYES.

05 Using the live CD
Perhaps the easiest way to get up and running with

ExpEYES (if you have a computer with a CD drive) is to use the

live CD which is included in the ExpEYES kit. Making sure that

you are booting into the live CD from your BIOS boot menu, you

should then be greeted with a Linux-based desktop. Plug in your

ExpEYES by USB and you can open the software from the menu

by going to Applications>Science>ExpEYES-Junior. Alternatively,

you can run it from a terminal window using:

 sudo python /usr/share/expeyes/eyes-junior/croplus.py

06 Update your Raspberry Pi
As with almost every project you undertake on the

Raspberry Pi, it pays dividends to make sure that your operating

system is updated to the latest stable version, as this can save

you a lot of hassle further down the line. To do this, open an

LXTerminal session and then type sudo apt-get update, followed

by sudo apt-get upgrade –y, and then wait patiently for the

upgrade process to complete.

03 What’s inside?
As you may have guessed, the ExpEYES kit includes

the main ExpEYES USB digital oscilloscope, but it also contains

a wide range of other hardware including a DC motor, magnets,

LEDs, coils, piezoelectric discs, wiring, a small screwdriver for

opening the screw terminals and more. You also get a live CD

which contains all the ExpEYES software and documentation

ready to go on a bootable disc.

04 What can it do?
The chip at the heart of ExpEYES is an AVR ATmega16

MCU (microcontroller unit), running at 8 MHz coupled to a USB

interface IC (FT232RL). These are low-cost but provide good

value for money. As we have already mentioned, ExpEYES is

therefore capable of acting as a four-channel oscilloscope but

also has a built-in signal generator, 12-bit analogue resolution,

microsecond timing resolution and a 250 kHz sampling

frequency. At this price point, that’s an impressive set of features

and certainly accurate enough for anything that is not mission

critical (like learning, hobby projects, quick readings and so on).

Left The kit itself
is highly portable
and great for taking
down to Jams and
hackspaces

It pays dividends to make sure that
your operating system is updated to
the latest stable version, as this can
save you a lot of hassle

The ExpEYES
software is mainly
written in Python.
This means that the
core software to
run your ExpEYES
device is quite
platform-agnostic –
if the device can run
a Python interpreter
and has a Python
module enabling it
to access the serial
port then it will work
with ExpEYES. If you
visit the ExpEYES
website, there is a
page that explains
how to install the
software on Linux
and Windows –
www.expeyes.
in/software-
installation. In
addition, there is a
native Android app
which will enable
your ExpEYES
to work with any
Android device that
has USB OTG (on the
go) capability.

Other
supported
platforms

83

RUN SCIENCE EXPERIMENTS ON THE EXPEYES KIT

07 Install the software
Due to efforts of community member Georges

Khaznadar, there are DEB packages available for the ExpEYES

software that should work perfectly on Debian, Ubuntu, Linux

Mint and, of course, Raspbian. These are also included in the

offi cial Raspbian repositories, so all you need to do to install

the ExpEYES software is to open an LXTerminal session on the

Raspberry Pi and then run the following commands:

 sudo apt-get update

 sudo apt-get install expeyes

08 Install dependencies
ExpEYES has a number of dependencies that are

required for it to run under Linux, as well as a number of other

recommended libraries. During the installation undertaken

in Step 7, the dependencies should be installed by default.

However, to avoid any problems later, you can run the following

command in order to make sure that they are all installed:

 sudo apt-get install python python-expeyes python-

 imaging-tk python-tk grace tix python-numpy python-

 scipy python-pygrace

09 Overclock your Raspberry Pi (optional)
The ExpEYES software will run fi ne on a Raspberry Pi

with default settings, however it can be slow to respond if you

are using a Model A, B or B+. We recommend using a Model 2B,

but if you don’t have one, overclocking your Pi would be advisable

(you can overclock your 2B as well if you want it to run a bit faster).

Open an LXTerminal session and type sudo raspi-confi g. In the

menu, select the option ‘7 Overclock’. Click OK on the following

screen and then select Turbo. Click OK and you should see some

code run. Once this completes, press OK again and then you are

brought back to the main raspi-confi g window. Select Finish in

the bottom right and Yes to reboot your Raspberry Pi.

10 Overclocking continued
Overclock can sometimes cause instability on your

Raspberry Pi or an inability to boot at all. If this happens you can

press and hold the Shift key on your keyboard once you reach the

above splash screen to boot into recovery mode. You can then

redo Step 7 at a lower overclock setting and repeat until you fi nd

the highest stable setting.

11 Resistance of the human body
An interesting experiment for your fi rst time using an

oscilloscope it to measure the resistance of the human body over

time. This is easy to accomplish with just three bits of wire and a

resistor (200 kOhm). On the ExpEYES, connect a wire between

A1 and PVS, connect the resistor between A2 and ground, and

connect an open-ended wire out of both PVS and A2. Plug in your

ExpEYES and open the control panel, then drag A1 to CH1 and

A2 to CH2, and set PVS to 4 volts. You can then pick up one of the

open-ended wires in each hand and watch the response on the

ExpEYES control panel.

12 Run the maths
From the output plot, you should fi nd that the input on

CH1 is coming out at 3.999 volts (which is great because we set

it to be 4!). The voltage on A2 (CH2) is showing as 0.9 volts for

us, which implies that the voltage across the unknown resistor

value (your body) is 4 – 0.9 = 3.1 volts. Using Ohm’s law (V=IR),

we can then calculate the current (I) across the known resistor

value: voltage ÷ resistance = 0.9 ÷ 200,000 = 0.0000045 amps

= 4.5 uA (micro amps). Using this value we can then calculate

the resistance of the body using the same Ohm’s law equation in

reverse: voltage ÷ current = 3.1 ÷ 0.0000045 = 688889 ohms =

689 k . This is a surpisingly high value, however the resistance

of the human body depends hugely on how dry your skin is and

a large number of other factors (body resistance is usually in the

range of 1,000 to 100,000 ohms).

13 Use the Python library
The ExpEYES team have built a custom Python library

for the device. This is slightly harder to use than the GUI and

not as pretty, but it enables a lot more versatility as well as the

capability to use ExpEYES functionality within your Python

scripts. If you have followed the installation instructions above,

all you need to do is import the Python module and then initialise

a connection to the ExpEYES using:

 import expeyes.eyesj

 p=expeyes.eyesj.open()

ExpEYES was
developed by Ajith
Kumar and his
team as part of the
PHOENIX (Physics
with Homemade
Equipment
and Innovative
Experiments)
project, which was
started in 2005 as a
part of the outreach
program of the
Inter-University
Accelerator Centre
(IUAC) in New Delhi,
India. Its
objectives are
developing
affordable
laboratory
equipment and
training teachers to
use it in their
lesson plans.

ExpEYES
& PHOENIX

84

SOFTWARE

A digital storage oscilloscope is
a useful tool in any engineer or
hacker’s toolbox, as it enables you
to get insights into your projects that
aren’t possible with visual checks

14 The Python library (continued)
Now we will plot a sine wave using the ExpEYES and

PyLab libraries. On the device, connect OD1 to IN1 and SINE to A1

with some wire. Run the following code and you should see that a

sign wave has been plotted.

 import expeyes.eyesj

 from pylab import *

 p=expeyes.eyesj.open()

 p.set_state(10,1)

 print p.set_voltage(2.5)

 ion() # set pylab interactive mode

 t,v = p.capture (1,300,100)

 (plot t,v)

15 Further experiments
This tutorial has shown you just a single example of

the documented ExpEYES experiments available at http://

expeyes.in. There is a wide variety of different techniques

and phenomena explored in those experiments, so it is highly

recommended to get your hands on an ExpEYES kit and work

through them. Running through those examples as a beginner

will give you a much deeper understanding of electronics.

16 The verdict
A digital storage oscilloscope (plus extras) is a useful

tool in any engineer or hacker’s toolbox, as it enables you to get

insights into your projects that aren’t possible with just visual

checks or using a multimeter. Whilst no £50 oscilloscope will

compare to expensive professional units, this is a great entry-

level product as well as a versatile, portable USB device with

multiplatform support for when you just can’t be lugging around

a 10 kg, £1000+ scope.

Above There’s a great range of
experiements for you to try inside
the ExpEYES documentation over

at: bit.ly/1E7hdYy

85

RUN SCIENCE EXPERIMENTS ON THE EXPEYES KIT

86

SOFTWARE

Turn your Raspberry Pi into an Internet of Things with this CPU
temperature gauge tutorial

Monitor CPU
temperature with Dizmo

The Raspberry Pi is an exciting

prospect for people interested in an

Internet of Things – size, power and

flexibility make it perfect for powering

any Internet-connected device

around the home or office. Setting up

a Raspberry Pi to be the brain of an IoT

network isn’t exactly a case of selecting

the right software in Raspbian, though;

there’s a lot of custom work you need to

do to get one going.

This is where Dizmo comes in,

enabling you to control IoT objects

using an online API that you can then

access remotely. To show you how it

works, we’re going to have it track the

Raspberry Pi’s core temperature. In this

tutorial we are going to work entirely

over SSH, but you can easily do this

straight on the Pi – the benefit of SSH

though is that for a real IoT, it will be

easier to maintain remotely.

01 Dial into your Pi
Make sure your Raspberry Pi can connect to your

network, either via Wi-Fi or ethernet cable, and find out the

IP address by using ifconfig. Use this IP to dial into the Pi from

another system with:

 $ ssh pi@[IP address]

Above Dizmo is
designed to be
a multi-touch
interface

87

MONITOR CPU TEMPERATURE WITH DIZMO

02 Install dizmoSpace
If you haven’t already, head to www.dizmo.com, grab

dizmoSpace and install it to the system you plan for it to work

with. All you need to do is download the zip and unpack it, then

click the Dizmo icon or run it from the terminal.

05 Add framework
Use node -v to check if it’s installed correctly – it should

spit out a version number for you. Once that’s done, install

express.js, which will be our web application framework:

 $ sudo npm install -g express

 $ sudo npm install -g express-generator

06 Install framework
We’ll create the folder www in var and create a symlink

for everything to run. Do this by moving to var, creating www and

making the symlink with:

 $ cd /var

 $ sudo mkdir www

 $ cd www

 $ sudo ln -s /usr/local/lib/node_modules/

 /node_modules

03 Launch issues?
If Dizmo is complaining about libraries when you try

to run it, you’ll need to install some extra software. Open the

terminal on the PC you’re working from and install the extra

software with the following:

 $ sudo apt-get install libavahi-compat-libdnssd-dev

 $ sudo apt-get install libavahi-client-dev

04 Download node.js
Now, we need to grab the latest version of node.js for the

Raspberry Pi. Back in the SSH connection to your Raspberry Pi,

use the following:

 $ sudo wget http://node-arm.herokuapp.com/

 node_latest_armhf.deb

 $ sudo dpkg -i node_latest_armhf.deb

Left Builds are
available for various
distros on the
Download page, and
you can also check
the pricing plans

A Dizmo widget is a HTML file,
packaging resources together to
create an interface or graphic. Our
HTML file uses jQuery

88

SOFTWARE

It’s not a very
descriptive term,
but the Internet
of Things can be
almost anything. Any
item that is or can
be connected to the
internet or networks,
such as modern
automated lights,
can be connected
up to Dizmo and the
Raspberry Pi.

Dizmo space walk
Enjoy some pre-
installed projects
to see exactly what
Dizmo can do

PiGauge Create
a custom app
to monitor the
temperature of your
Raspberry Pi, and
then go even further

Browser Create
an entire custom
display using
a variety of
information that
can connect to and
through the Pi

Internet
of Things

07 Package fi le
First, create the fi le package.json with sudo nano

package.json, then enter:

{

“name”: “ServeSysinfo”,

“version”: “0.0.1”,

“dependencies”: {“express”: “4.x”}

}

08 App node
Now, create a fi le called app.js and enter the following:

var express = require(‘express’);

var app = express();

app.use(express.static(__dirname + ‘/public’));

app.listen(3000, function(){

console.log(‘listening on *.3000’);

});

09 Start node.js
You can now start the node server by typing in:

 $ node app.js

It will say it’s listening on *.3000. Start up a new terminal, ssh in,

and create the folder /public with mkdir /public to save all of the

CPU data in.

10 CPU information
We are going to use the vcgencmd command to get the

CPU information from the Raspberry Pi. We will write a script that

will do this and then write the info to sysinfo.json. Download the

fi le grabsysinfo.sh from FileSilo and put it in /usr/local/bin.

11 Make a cronjob
We will make it so that the temperature is updated every

ten minutes. You can make it update much faster if you want, but

have a play around with that. Open up cron with sudo crontab

-e and add this at the end:

*/10 * * * * /usr/local/bin/grabsysinfo.sh

Above As it’s
multi-touch, Dizmo
is perfect for
interactive table
displays in meetings

89

With these building blocks, you can
now start doing more interesting IoT
things – controlling the GPIO ports,
getting more information

12 Start creating the widget
It is time to actually start building the widget. First of all,

create a folder on your local machine called Gauge and cd to it.

Now you need to download the fi rst fi le called info.plist into here

by using the following:

 $ wget x/info.plist

13 Index fi le
A Dizmo widget is basically a HTML fi le, packaging

resources together to create an interface or graphic. Here, we

have the main HTML fi le that uses jQuery, which helps display

the temperature. Still in the Gauge folder, download it with:

 $ wget x/index.html

14 Style guide
Now we’ll add the CSS style sheet for the Dizmo widget.

As usual, this styles up the display on the page that will become

our widget. Download it with:

 wget x/style.css

15 Final application
The fi nal step is to create the application.js fi le, which will

call the temperature from the Raspberry Pi using Ajax. You can

download it using:

 wget x/application.js

Change the IP address to the one on your Pi.

Once that’s done, you can test out the widget – compress the

Gauge folder to a .zip and then change the .zip to a .dzm. Launch

dizmoSpace and drag the dzm fi le onto it for it to start.

16 Get coding
With these building blocks, you can now start doing more

interesting IoT things – controlling the GPIO ports, getting more

information, having it connect to other objects to control them

as well. Check out the Dizmo website for more details on projects

that you can do.

Above We’ve gone
for a simple CPU
temperature gauge,
but the possibilities
really are endless

MONITOR CPU TEMPERATURE WITH DIZMO

90

SOFTWARE

Talking on the I2C bus
There are several ways that the Raspberry Pi can talk
to the world. Here, learn about the I2C bus

The Raspberry Pi was designed to

provide several ways to interact

with the world through sensors and

activators. In the past, we have looked

at using the GPIO interface pins to

communicate with several devices at

once. This is not the only way to work

with the world at large, however. In this

tutorial, we will look at one of the other

mechanisms available, the I2C bus.

I2C (Inter-Integrated Circuit) bus was

invented by Philips Semiconductor, with

version 1 having come out in 1992.

The design is for short connection

paths, and supports multiple masters

and multiple slaves where messages

on the bus are delivered using device

addresses. Messages have a START

section and a STOP section, wrapped

around the core of the message. The

three types of messages you can send

are a single message where a master

writes data to a slave, a single message

where a master reads data from a slave,

or a combined message where a master

sends at least two read or two write

messages to one or more slaves.

Now that we have a little bit of an

idea of what the I2C bus is, how can you

use it with your Raspberry Pi? The first

stephere is to activate the bus within

the Linux kernel. By default, the relevant

kernel modules are blacklisted and not

loaded at boot time. If you are using

a newer version of Raspbian, you can

use the utility ‘sudo raspi-config’ and

select the ‘Advanced Options’ section

to set correct options. If you are using

an older version or simply wish to make

the changes manually, it is a bit more

complex. In order to change this, you will

need to edit the file ‘/etc/modprobe.d/

raspi-blacklist.conf’ and comment out

the line about the I2C module. The line in

question is

 blacklist i2c-bcm2708

This line should be changed to

 #blacklist i2c-bcm2708

Once you have removed the I2C module

from the blacklist, you can add the

I2C module to the list of modules to

be loaded at boot time. This file is ‘/

etc/modules’, and you should add the

following to the end of the file contents

 i2c-dev

Rebooting at this point will now make

the I2C bus accessible to the kernel.

Because it is a low level interface, your

user will need to be added to the I2C

access group. If you are still using the

default Pi user, you can do this with the

command

 sudo adduser pi i2c

In order to do anything useful, you will

want to install the available command

line tools and the Python module with

the command

 sudo apt-get install i2c-tools

python-smbus

A simple test to verify that everything is

working correctly is to use the command

‘i2cdetect -y 0’ to query the bus and see

if anything is connected. You should see

that nothing is there, since we haven’t

connected anything yet. If you are using a

newer Raspberry Pi, the I2C bus is set to

using port 1, rather than 0, so you would

need to use the command ‘i2cdetect -y

1’ instead. You are now ready to connect

your devices to the Raspberry Pi.

The pins used are part of the GPIO

header, with two of those pins used for

I2C communications. There are modules

available to detect magnetic fields, or

ultrasonic range finders, among many

others. The devices that you attach

to the I2C bus all need to have unique

addresses so that only one of the

devices will receive messages to some

particular address. The address of the

device is set during manufacture, so

you will need to read the specification

documents to see what the address

is for any particular device. Now that

everything is set up and connected, we

can start to look at how to write some

Python code to actually do something

useful with the devices on the bus. The

first step in this process is to import the

required module with

 import smbus

You may have noticed that we didn’t

import something with I2C in the name.

This is because the hardware on the

Raspberry Pi uses a subset of the full

I2C specification, called SMBus (System

Management Bus), defined by Intel in

1995. This is also the protocol used in

I2C interfaces for desktop computers.

Before doing anything else, you will need

to instantiate an SMBus object with

 bus = smbus.SMBus(0)

The parameter handed in within the

constructor is the port to open a

connection on. So, for a newer Raspberry

Pi, you would use 1 rather than 0. Once

you have a new SMBus object you can

start doing some basic reading and

writing to the devices on the I2C bus. The

most basic boilerplate code looks like

 i2c_addr = 0x20

 # Write a byte to the device

 bus.write_byte(i2c_addr, 0xFF)

 # Read a byte from the device

 val = bus.read_byte(i2c_addr)

I2C (Inter-integrated Circuit)
bus was invented by Philips
Semiconductor, with version 1
having come out in 1992

91

Since we are dealing with individual

bytes, it is easiest to use hexadecimal

numbers in your code. The common

parameter in both reading and writing

is the bus address for the device. This

address is a 7-bit number, which may be

given to you as a binary number within

the documentation for the device. You

can convert it to a hexadecimal pair by

adding an extra 0 to the beginning of this

7-bit address.

These simple commands write to the

fi rst register of your device. But, it may

be more complex and have multiple

registers available for reading and

writing data to. In these cases, you can

explicitly pick which register to use with

the functions

 # Writing to a specific register

 reg = 0x10

 val = 0x01

 bus.write_byte_data(i2c_addr, reg,

val)

 # Reading from a specific

register

 return_val = bus.read_byte_

data(i2c_addr, reg)

For larger chunks of data, you can read

and write 2-byte words, as well. The code

to do this looks like

 # Writing a full word

 word_val = 0x0101

 bus.write_word_data(i2c_addr, reg,

word_val)

 # Reading a full word

 return_word = bus.read_word_

data(i2c_addr, reg)

For most devices, this is probably the

most that you will need to use. There

will be cases, however, when you need

to read and write even larger chunks of

data to and from your device. In these

cases, you can read and write entire

lists of values to and from your device.

Because of the specifi cation differences

between I2C and SMBus, there are two

sets of reading and writing functions.

If you want to use the SMBus, the

functions look like

 # Writing a full list

 list_val = [0x01, 0x02, 0x03,

0x04]

 bus.write_block_data(i2c_addr,

reg, list_val)

 # Reading a full list

 return_list = bus.read_block_

data(i2c_addr, reg)

The problem with these methods is

that they are limited to a maximum of

32 bytes of data. If you need to transfer

more than this, you need to use the

underlying I2C protocols. When you write

a list, you can simply hand in the list.

When reading, however, you need to tell

the library how many bytes to read in as

part of the function call. A basic example

of the code would look like

 # Writing a full list

 list_val = [0x01, 0x02, 0x03,

0x04]

 bus.write_i2c_block_data(i2c_addr,

reg, list_val)

 # Reading a full list of 5 values

 return_list = bus.read_i2c_block_

data(i2c_addr, reg, 5)

There’s also the concept of a process call

within the SMBus protocol. This function

both sends a block of data and reads a

block of data from a device on the bus.

The python function call looks like

 result_list = bus.block_process_

call(i2c_addr, reg, list_val)

This lets you interact with the device in a

single function call, which can help clean

up your code a bit.

The last two functions we will look

at are shortcut functions, designed to

allow for quick interactions with your I2C

device. The fi rst is the function

 bus.write_quick(i2c_addr)

This function writes a single bit to the

fi rst register of the device at the address

you give it. For some devices, this may be

enough interaction to get some useful

work done. The second shorthand

function is

 bus.process_call(i2c_addr, reg,

val)

This function call executes the process

call transaction of the SMBus protocol,

similar to the ‘block_process_call()’

function from above. The purpose is to

send a chunk of data to your device and

receive a resultant set of data back from

it, as a single function call.

Hopefully, this article has been able to

provide a jumping off point in using I2C

and SMBus. Now, you can start adding a

whole suite of devices to your Raspberry

Pi and create a complete sensor

platform for your projects.

The Raspberry Pi has another communication bus

available for you to use, called the SPI bus (Serial

Peripheral Interface). It is similar to the I2C interface,

except it only allows for a single master. The SPI bus is also

not active by default.; you will need to activate it, either

manually or by using the ‘raspi-config’ utility. You will also

need to install the relevant python module with

 sudo apt-get python-spidev

Once you have SPI activated and the spidev module

installed, you can initialise the bus with the code

 import spidev

 spi = spidev.SpiDev()

The next step is to open a connection to the device of

interest. To do this, you need to use the function

 spi.open(0, 0)

The two parameters in the open function are the bus and

device IDs for the device you want to talk to. When you are

done, you will need to explicitly close the connection with

 spi.close(0, 0)

To do basic reading and writing, you can use the

following two functions

 # Read X bytes spi = spidev.SpiDev()

 vals = spi.readbytes(X)

 # Write X bytes

 inputs = [0x01, 0x02, 0x03]

 spi.writebytes(inputs)

For larger chunks of data, there are two other functions

available. These are ‘xfer()’ and ‘xfer2()’. The fi rst one

transfers the data at once, keeping the CE line asserted

the whole time. The second one de-asserts and re-

asserts the CE line after each byte is transferred.

There is a low-level function available, called ‘fi leno()’,

that returns a fi le descriptor for the SPI device. This

fi le descriptor can then be used with low-level fi le

interfaces, like ‘os.read()’. This provides yet another way

of talking with peripheral devices.

SPI is
available too

TALKING ON THE I2C BUS

Breathe new life into an old printer by using your
Raspberry Pi as a wireless print server

Print wirelessly with
your Raspberry Pi

Wireless printing has made it possible to print to devices

stored in cupboards, sheds and remote rooms. It has generally

shaken up the whole process of printing and enabled output

from smartphones, tablets, laptops and desktop computers

alike. But you don’t have to own a shiny new printer for this to

work; old printers without native wireless support don’t have to

end up in the bin, thanks to the Raspberry Pi.

The setup is simple. With your Raspberry Pi set up with a

wireless USB dongle, you connect your printer to a spare USB

port on the computer. With Samba and CUPS (Common Unix

Printing System) installed on the Raspberry Pi, all that is left to

do is connect to the wireless printer from your desktop computer,

install the appropriate driver and start printing.

CUPS gives the Raspberry Pi a browser-based admin screen

that can be viewed from any device on your network, enabling

complete control over your wireless network printer.

01Check your printer works
Before starting, check that the printer you’re planning to

use for the project still works and has enough ink. The easiest

way to do this is to check the documentation (online if you can’t

fi nd the manual) and run a test print.

What you’ll need
 Latest Raspbian image

 raspberrypi.org/downloads

 USB printer

 USB wireless card

92

SOFTWARE

02
Detect your printer
With your Raspberry Pi set up as usual and the printer

connected to a spare USB port, enter:

 lsusb

This will confi rm that the printer has been detected by your

Raspberry Pi. In most cases you should see the manufacturer

and model displayed.

03 Install Samba and CUPS
Install Samba to enable fi le and print sharing across

the entire network:

 sudo apt-get install samba

Next, install CUPS:

 sudo apt-get install cups

With a print server created, begin confi guration by adding

default user ‘pi’ to the printer admin group:

 sudo usermod -a -G lpadmin pi

04 Set up print admin
Set up the CUPS print admin tool fi rst. Boot into the

GUI (startx) and launch the browser, entering 127.0.0.1:631.

Here, switch to Administration and ensure the ‘Share

printers’ and ‘Allow remote administration’ boxes are selected.

Next, select Add Printer and enter your Raspbian username

and password when prompted.

05 Add your printer
A list of printers will be displayed, so select yours

to proceed to the next screen where you can confi rm the

details, add a name and check the Share This Printer box.

Click Continue to load the list of printer drivers and select the

appropriate one from the list.

06 Confi gure Samba for network printing
Using a Windows computer for printing? Samba will

need some confi guration. Open ‘/etc/samba/smb.conf’ in nano,

search (Ctrl+W) for ‘[printers]’ and fi nd ‘guest ok’ which you

should change as follows:

 guest ok = yes

Next, search for “[print$].” Then change the path as follows:

 path = /usr/share/cups/drivers

07 Join a Windows workgroup
With these additions made, search for “workgroup” in

the confi guration fi le and add your workgroup:

 workgroup = your_workgroup_name

 wins support = yes

Make sure you uncomment the second setting so that the print

server can be seen from Windows. Save your changes and then

restart Samba:

 sudo /etc/init.d/samba restart

08 Accessing your printer on Linux
Meanwhile, it’s a lot easier to access your wireless

printer from a Linux, Mac OS X or other Unix-like system, thanks

to CUPS. All you need to do is add a network printer in the usual

way and the device will be displayed.

09 Add AirPrint compatibility
It’s also possible to print wirelessly from your iPad

using Apple’s AirPrint system. To do this, you need to add the

Avahi Discover software:

 sudo apt-get install avahi-discover

Your wireless printer will now be discoverable from your iPad or

iPhone and will be ready to print.

Begin configuration by adding
the default user ‘pi’ to the
printer admin group

93

PRINT WIRELESSLY WITH YOUR RASPBERRY PI

94

SOFTWARE

Use a web interface to control your Pi and employ it as a
fi leserver or media centre from a remote location using any
web-connected device

Remotely control your
Raspberry Pi

Not everyone uses the Raspberry Pi

while it’s hooked up to a monitor like a

normal PC. Due to its size and excellent

portability, it can be located almost

anywhere that it can be powered and

it’s widely used as a fi le server, media

centre and for other nontraditional

applications as well. Some of these uses

won’t easily allow access to a monitor for

easy updates and maintenance. While

you can always SSH in, it’s a bit slower

than a full web interface that allows for

custom commands and a view of the Pi’s

performance. We’re using software called

RaspCTL, which is still in development,

but works just fi ne for now.

01 Update your Pi!
To make sure the Raspberry Pi works as best it can, you’ll

need to update Raspbian. Do this with a sudo apt-get update

&& apt-get upgrade, followed by a fi rmware update with sudo

rpi-update. Finally, if you’re booting to LXDE, enter raspi-

config and change it to boot to command line to save power.

What you’ll need
 Raspbian set to

 command line

 RaspCTL

 Internet connection

Commands Create custom
commands for running your Raspberry Pi

Main window Get the full details of
the currently running system from the web

Other utilities Seeing through your
webcam and setting an alarm are just two
additional things you can do with your Pi

95

REMOTELY CONTROL YOUR RASPBERRY PI

02
Edit the IP
For everything to work more easily, you should set the

Raspberry Pi to have a static IP of your choice. To do this, edit the

networking config by using:

 $ sudo nano /etc/network/interfaces

…and change iface eth0 inet dhcp to iface eth0 inet static.

03 Set up a static IP
Add the following lines under the iface line with your

relevant details:

 address 192.168.1.[IP]

 netmask 255.255.255.0

 network 192.168.1.0

 broadcast 192.168.1.255

 gateway 192.168.1.[Router IP]

04 Ready to install
You’ll need to grab the public keys for the software

we’re going to install by using the following commands. The first

will take just a moment to download the software, while the

other quickly installs it:

 $ wget debrepo.krenel.org/raspctl.asc

 $ cat raspctl.asc | sudo apt-key add -

05 Add the repository and install
Add the repository to the source’s file with the

following command:

 $ echo “deb http://debrepo.krenel.org/ raspctl

 main” | sudo tee /etc/apt/sources.list.d/raspctl.

 list

…and finally install the software with:

 $ sudo apt-get update

 $ sudo apt-get install raspctl

06 Access your Raspberry Pi
Now the software is installed you can start to access

your Raspberry Pi from anywhere on your network. To do this

type the following into your address bar, with the IP being the one

we set up earlier:

 http://[IP]:8086

07 Change your password
The default username and password is admin for both

fields, and you should make sure to change that before doing

anything else. Go to Configuration along the top bar and find

the Authentication field at the bottom of the page. Input the

original password (admin), followed by your new passwords.

The username will remain as admin.

08 First command
Go to Commands on the top bar to begin creating

commands to run. Here you’ll need to add a class – a user-

defined way to filter your commands that won’t affect the way

it’s run – a name for the command and the actual command

itself. The commands won’t necessarily run from the pi user

unless you tweak the config files.

09 More functions
The web interface has a few extra functions apart from

running commands, such as the ability to view the webcam and

connect to radio services. Updating the software every so often

will also allow you to make sure it keeps working. Play around

with it and see what best suits you.

96

SOFTWARE

Turn your Pi into a motion
sensor with SimpleCV
Learn how to implement facial recognition into your
Raspberry Pi using Python and a webcam

The Kinect has proven a popular piece

of tech to use with the Raspberry Pi. But

not everyone has access to this kind of

hardware. Another class of project that

is popular with Raspberry Pis is using

USB cameras to create monitors of one

form or another. A lot of these projects

use command line applications to talk to

the USB camera and generate images

or movies that are used as part of the

system. But what if you are writing your

own program in Python and you want to

add some form of image system to your

code? Luckily, there are several modules

available for you to choose from. In this

article, we will take a look at using SimpleCV

to get your program to talk with the USB

camera. SimpleCV is built on top of OpenCV,

making it easier to use for common tasks.

Assuming you are using Raspbian, you

can go to the main page for SimpleCV

(www.simplecv.org) and download a DEB

file. To install it, you can simply run:

 sudo dpkg -i SimpleCV-1.31.deb

Before you do, however, you will want to

install all of the dependencies. You can do

that with the command:

 sudo apt-get install python

 python-support python-numpy

 python-scipy ipython python-

 opencv python-pygame python-

 setuptools

You can check that everything worked

by running the command ‘simplecv’ at

the command line. This will start Python

up and run the interactive shell that is

provided by the SimpleCV module. You

can then try connecting to your USB

camera and pulling images from it.

Now that everything should be up and

running, how do you actually use it in your

own code? You can load all of the available

functions and objects into the global

scope with the command:

from SimpleCV import *

Making sure that you have your USB

camera plugged in, you can now create a

camera object with:

cam = Camera()

This will load the required drivers, and

initialise the camera so that it is ready

to start taking pictures. Once this object

creation returns, you can grab an image

from the camera with:

img = cam.getImage()

At least in the beginning, when you are

experimenting, you may want to see what

this image looks like. You can do this with:

img.show()

You will, of course, need to have a GUI

up and running in order to actually see

the movie. Otherwise, you will get an

error when you try and call ‘img.show()’.

Don’t forget that you can always pull up

documentation with commands like:

help(cam)

help(img)

SimpleCV is built on top of
OpenCV, making it easier to
use for common tasks

It’s the official
language of the
Raspberry Pi.
Read the docs at
python.org/doc

Why
Python?

With the ‘Image’ object, you can do some

basic processing tasks right away. You

can scale an image by some percentage,

say 90%, with ‘img.scale(90,90)’. You

can also crop an image by giving it a

start location and saying how many

pixels across and how many up and

down you want to crop to. This looks

like ‘img.crop(100,100,50,50)’. SimpleCV

has the location (0,0) as the top-left

corner of an image.

The really interesting functionality in

SimpleCV is the ability to find features

within an image and to work with them.

One of the clearest features you can look

for is blobs, where blobs are defined as

continuous light regions. The function

‘img.findBlobs()’ will search the captured

image for all blobs and return them as a

FeatureSet. You can set the minimum

number of pixels to consider a single

blob, the maximum number of pixels,

as well as a threshold value. If you are

looking at a region that has some hard

edges, you can use the function ‘img.

findCorners()’. This function will return

a FeatureSet of all of the corners within

the captured image. A very simple

monitor program could use one of these

functions to see if there is any motion

happening. If there is, then the set of

blobs or corners will change from one

frame to another. Of course, a little

more reading will lead you to the ‘img.

findMotion()’ function. This function will

take two subsequent images and see if

any motion can be detected going from

one to the other. The default method is to

use a block matching algorithm, but you

can also use either the Lucas-Kanade

method or the Horn-Schunck method.

The above methods will let you know

some features of the captured images,

and if any kind of motion has occurred.

But what if you are more interested in

identifying whether people have been

moving around? Maybe you have an

area you need to secure from espionage.

97

TURN YOUR PI INTO A MOTION SENSOR WITH SIMPLECV

SimpleCV provides a simple interface to OpenCV

First, we will import everything into the local

namespace

from SimpleCV import *

Make sure your USB camera is plugged in,

then you can create a camera object

cam = Camera()

Getting an image from the camera is straightforward

img = cam.getImage()

You can rescale this image to half its original size

img2 = img.scale(50,50)

There are several features that you may want to look at

You can extract a list of blobs

blobs = img.findBlobs()

You can draw these blobs and see where they are on

the image

blobs.draw()

or a list of corners

corners = img.findCorners()

If you want to identify motion, you will need two

frames

img2 = cam.getImage()

You can get a FeatureSet of motion vectors with

motion = img2.findMotion(img)

Face recognition is possible too. You can get a list of

the types of features you can look for with

img.listHaarFeatures()

For faces, you can generate a Haar Cascade

faces = HaarCascade(‘face.xml’)

Now you can search for faces

found_faces = img.findHaarFeatures(faces)

You can load image files with the Image class

my_img = Image(‘my_image.jpg’)

You can save images to the hard drive, too

img.save(‘camera.png’)

Full code listing

You can look for blobs –
continuous light regions

In this case, you can use the function

‘img.fi ndSkintoneBlobs()’. You can use

a binarise fi lter threshold to set what

constitutes a skin tone. If you need to

do more, you have access to all of the

underlying OpenCV functionality. One of

these more advanced functions is face

recognition. You can use the function ‘img.

fi ndHaarFeatures()’ to look for a known

type of object. If you wanted to look for

faces, you could use something like:

faces = HaarCascade(“./SimpleCV/

Features/HaarCascades/face.

xml”,“myFaces”)

img.findHaarFeatures(faces)

When you start developing these types

of programs, one thing that might come

into play is timing issues. You want to

be sure that your code is fast enough

to catch everyone that may be moving

through the fi eld of the camera. In order

to fi gure out what is costing time, you

need to be able to profi le your code. The

shell in SimpleCV provides a feature

called ‘timeit’ that will give you a quick

and dirty profi ling tool that you can

use while you are experimenting with

different algorithms. So, as an example,

you can see how long the ‘fi ndBlobs()’

function takes on your Raspberry Pi with

something like:

img = cam.getImage()

timeit img.findBlobs()

Once you fi nd and fi x the bottlenecks in

your code, you can create the end product

for your fi nal version.

With this article, you should now have

enough to start using cameras from

within your own programs. We have only

been able to cover the bare essentials,

however, so don’t forget to go check out

the documentation covering all of the

other functionality that is available in the

SimpleCV module.

SimpleCV is built on top of OpenCV and

provides a simplifi ed set of functions.

But what can you do if you have more

complicated work to do? You always have

the option of using OpenCV directly to

gain access to the full set of functions.

You can import the module into the local

namespace with:

from cv2 import *

Not only do you have the usual image

manipulation functions and the feature

recognition tools, but you also have the

ability to process video. You can use

meanshift and camshift to do colour

based motion detection. There are

functions to look at optical fl ow. These

look at apparent motions in a video, from

one frame to the next, that are caused by

either the object moving or the camera

moving. You can even subtract the

background from a moving foreground

object. This is a common preprocessing

step in vision systems. You can even

construct 3D information from a set

of stereo images gathered by a pair of

cameras. With OpenCV, you really can

deal with almost any vision problem you

might be tackling.

Importing

Above Any basic USB webcam or
surveillance monitor will do for this

98

SOFTWARE

We are going to take you through the basics of wavetable

synthesis theory and use that knowledge to create a real-

time synthesiser in Python. At the moment, it is controlled

by the computer keyboard, but it could easily be adapted to

accept a MIDI keyboard as input.

The Python implementation of such a synthesiser turns out

to be too slow for polyphonic sound (ie playing multiple notes

at the same time) so we’ll use Cython, which compiles Python

to C so that you can then compile it to native machine code to

improve the performance. The end result is polyphony of three

notes, so this is not intended for use as a serious synthesiser.

Instead, this tutorial will enable you to become familiar with

synthesis concepts in a comfortable language: Python.

Once you’re fi nished, try taking this project further by

customising the mapping to better fi t your keyboard layout, or

tweaking the code to read input from a MIDI keyboard.

01 Install packages
Using the latest Raspbian image, install the required

packages with the following commands:

 sudo apt-get update

 sudo apt-get upgrade

 sudo apt-get install python-pip python2.7-dev

portaudio19-dev

 sudo pip install cython pyaudio

The fi nal step compiles Cython and PyAudio from source, so you

might want to go and do something else while it works its magic.

02 Disable built-in sound card
We had issues getting the Raspberry Pi’s built-in sound

card to work reliably while developing the synthesis code. For

What you’ll need
 Raspberry Pi 2

 USB sound card (we used
a Behringer UCA202)

Learn how to write a simple polyphonic synthesiser (and the
theory behind it) using Python and Cython

Code a simple synthesiser

SOFTWARE

99

CODE A SIMPLE SYNTHESISER

04 Start project
Start by creating a directory for the project. Then

download one cycle of a square wave that we will use as a

wavetable, like so:

 mkdir synth

 cd synth

 wget liamfraser.co.uk/lud/synth/square.wav

03 Test sound card
Now we can test the USB sound card. Type alsamixer and

then ensure that the volume is set to a comfortable level. If you’re

plugging speakers in, you’ll probably want it set to 100%. Then

type speaker-test, which will generate some pink noise on the

speakers. Press Ctrl+C to exit once you are happy that it’s working.

05 Create compilation script
We need a script that will profi le our Python code

(resulting in synth.html). Generate a Cython code for it and

fi nally compile the Cython code to a binary with GCC:

 editor compile.sh:

 #!/bin/bash

 cython -a synth.pyx

 cython --embed synth.pyx

 gcc -march=armv7-a -mfpu=neon-vfpv4 -mfloat-

abi=hard -O3 -I /usr/include/python2.7 -o synth.

bin synth.c -lpython2.7 -lpthread

(Notice the options that tell the compiler to use the fl oating

point unit.) Make it executable with:

 chmod +x compile.sh

#!/usr/bin/python2

import pyaudio

import time

from array import *

from cpython cimport array as c_array

import wave

import threading

import tty, termios, sys

class MIDITable:

 # Generation code from

 # http://www.adambuckley.net/software/beep.c

 def __init__(self):

 self.notes = []

 self.

 def (self):

 # Frequency of MIDI note 0 in Hz

 frequency = 8.175799

 # Ratio: 2 to the power 1/12

 ratio = 1.0594631

 for i in range(0, 128):

 self.notes.append(frequency)

 frequency = frequency * ratio

 def get_note(self, n):

 return self.notes[n]

cdef class ADSR:

 cdef public char state

 cdef int samples_per_ms, samples_gone

 def __init__(self, sample_rate):

 self.attack = 1.0/100

 self.decay = 1.0/300

 self.sustain_amplitude = 0.7

 self.release = 1.0/50

 self.state = �A�

 self.multiplier = 0.0

 self.samples_per_ms = int(sample_rate / 1000)

 self.samples_gone = 0

 def next_val(self):

 self.samples_gone += 1

 if self.samples_gone > self.samples_per_ms:

 self.samples_gone = 0

 else:

 return self.multiplier

 if self.state == �A�:

 self.multiplier += self.attack

 if self.multiplier >= 1:

 self.state = �D�

 elif self.state == �D�:

 self.multiplier -= self.decay

 if self.multiplier <= self.sustain_amplitude:

 self.state = �S�

 elif self.state == �R�:

 self.multiplier -= self.release

 return self.multiplier

Full code listing

Step 07

Step 08

that reason, we are using a USB sound card and will disable the

built-in card so that the default card is the USB one:

 sudo rm /etc/modprobe.d/alsa*

 sudo editor /etc/modules

Change ‘snd-bcm2835’ to ‘#snd-bcm2835’ and save, then:

 sudo reboot

Cython is a tool that compiles Python down to the C code that
would be used by the interpreter to run the code. This has the
advantage that you can optimise some parts of your Python code
into pure C code, which is signifi cantly faster. This is achieved by
giving C types, such as int, fl oat and char, to Python variables.

Once you have C code it can then be compiled with a C
compiler (usually GCC) which can optimise the code even
further. A downside to using Cython is that you can’t run Cython
optimised code with a normal Python interpreter. Cython is a nice
compromise because you get a similar simplicity to Python code
but higher performance than usual. Cython has a profi ler which
you can run using:

 cython -a synth.pyx

The profi ler outputs a html fi le which shows where any
optimisations can be made, giving you an insight into just how
much overhead using Python introduces. For more details you
can go to http://cython.org.

Cython

100

SOFTWARE

09 Generate notes
The note class is the core of our synthesiser. It uses

the wavetable to generate waves of a specific frequency. The

synthesiser asks the note class for a sample. After generating a

sample, the ADSR multiplier is applied and then returned to the

synthesiser. The maths of this are explained in the synthesis

theory boxout on the opposite page.

The note class does as much maths as the ADSR class, so

it is optimised as much as possible using cdef keywords. The

cpdef keyword used for the next_sample function means that

the function can be called from a non-cdef class. However, the

main synth class is much too complicated to give static types

to absolutely everything.

10 The audio flow
This synth class is the main class of the application. It

has two sample buffers that are the length of the buffer size.

While one buffer is being played by the sound card, the other

buffer is being filled in a different thread. Once the sound card

has played a buffer, the callback function is called. References

to the buffers are swapped and the buffer that has just been

filled is returned to the audio library.

The smaller the buffer size, the lower the latency. The

Raspbian image isn’t optimised for real time audio by default so

you may have trouble getting small buffer sizes. It also depends

on the USB sound card used.

cdef class Note:

 cdef int wavetable_len

 cdef c_array.array wavetable

 def __init__

 self.wavetable = wavetable

 self.wavetable_len =

 self. =

 self. = self.wavetable_len * \

/

 # Position in wavetable

 self. = 0.0

 # ADSR instance

 self.adsr =

 # Is this note done with

 self. = 0

 def

 = {0

= {1 . .

 self.

= 0

 adsr = self.adsr.

 if adsr < 0:

 self. = 1

= int(self.

= self. -

= self.

= 0

 # end of the table

 if + 1 == self.wavetable_len:

= self.wavetable[0

 else:

= self. +1

= + - *

+= *

 self. += self.

 if self. >= self.wavetable_len:

 self. -= self.wavetable_len

Full code listing (Cont.)
Step 09

Above A visual representation of an Attack, Decay,
Sustain, Release curve

08 Attack, Decay, Sustain, Release
The ADSR class applies a volume curve over time to the

raw output of an oscillator. It does this by returning a multiplier

to the note that is a multiple between 0.0 and 1.0. The version

we provide has an attack time of 100 ms, a decay time of 300

ms and a release time of 50 ms. You can try changing these

values to see how it affects the sound.

The ADSR class does a lot of maths (44,100 times per

second, per note). As such, we want to give types to all of the

variables so that the maths can be optimised into a raw C loop

where possible, because Python has a massive amount of

overhead compared to C. This is what the cdef keyword does.

If cdef public is used, then the variable can also be accessed

from inside Python as well.

07 MIDI Table
To synthesise the standard note of a piano, we need

a table of MIDI values. MIDI notes range from 0-127. MIDI note

60 is middle C on a piano. The MIDI Table class has a ‘get note’

function that returns the frequency of a note when you give it

a MIDI note number.

06 Start to code
Our code file is going to be called synth.pyx. This

extension tells Cython that it is not plain Python code (and as

such, can’t be ran in a normal Python interpreter). Create the

file with your favourite editor and add the imports.

CODE A SIMPLE SYNTHESISER

 return out_sample

class Synth:

 BUFSIZE = 1024

 SAMPLERATE = 44100

 def __init__(self):

 self.audio = pyaudio.PyAudio()

 self.buf_a = array(�h�, [0] * Synth.BUFSIZE)

 self.buf_b = array(�h�, [0] * Synth.BUFSIZE)

 # Oldbuf and curbuf are references to buf_a or

 self.playbuf = self.buf_b

 self. = self.buf_a

 self.

 self.notes = []

 self.notes_on = []

 self.more_samples = .

 self.exit = .

 # MIDI table of notes -> frequencies

 self.midi_table = MIDITable()

 def stop(self):

 print

 self.exit.set()

 self.stream.stop_stream()

 self.stream.close()

 def stream_init(self):

 self.stream = self.audio.open(

 format = pyaudio.paInt16,

 channels = 1,

 rate = Synth.SAMPLERATE,

 output = True,

= Synth.BUFSIZE,

 stream_callback = self.callback)

 def (self):

 # correct format

 fh = .open(�square.

 assert fh. == 1

 assert fh. == Synth.SAMPLERATE

 assert fh. == 2 # aka 16 bit

 data = fh.readframes(fh.

 self. = array(�h�)

 self. .

 def (self):

 tmp = self.playbuf

 self.playbuf = self.

 self. = tmp

Full code listing (Cont.)
Step 09

Wavetable synthesis is where you use a single cycle of a

wave as a lookup table to synthesise sound. In this case we

have a square wave, but you can load any wave shape you

like. CD-quality audio has a sample rate of 44,100 Hz, which

is what we used in our implementation. At each sample, the

synthesiser outputs a value from the wavetable and then

increments a position pointer to the next value in the table.

However, if the wavetable has a frequency of 440 Hz then we

need to be able to step through it at arbitrary sizes (ie non-

integer values). To achieve this, we use linear interpolation.

Assuming the table had a frequency of 440 Hz and we

wanted a frequency of 220 Hz, we’d need to step through the

table at a step size of 0.5. This can be thought of as drawing

a line between two values in the table and picking a value on

the line as your output. As an example, if element 0 is 5 and

element 1 is 10 then element 0.5 would be 5 + ((10-5) * 0.5),

which gives us a value of 7.5. When you reach a position that

goes over the end of the table, you wrap around and start

again. There is no discontinuity as you’re storing a single cycle

of the wave in the table. The equation for step size is:

 step_size = table_size * (note_frequency /

sample_rate)

The wavetable oscillator gets us a note at the desired

frequency, but it’s always at maximum amplitude and will

sound rough and unnatural. If you cut off a wave in the middle

of a cycle there will be a pop or click, so this is where Attack,

Decay, Sustain and Release envelopes help. These change

the amplitude of the raw oscillator output over time to sound

more like an instrument. This is done by applying a fractional

multiplier to the original sample point returned by the wave

table oscillator. Having a release time from 100% volume to

0% means that a note will fade out smoothly when it’s turned

off. With the right ADSR curves and the correct wavetable, a

synthesiser can sound very similar to real instruments.

More information can be found at: bit.ly/1KgI9dp.

Synthesis theory

Above Here’s one cycle of a wavetable oscillator

CODE A SIMPLE SYNTHESISER

101

SOFTWARE

 # generate more samples

 self.more_samples.set()

 def callback(self, in_data, frame_count,

 time_info, status):

 # Audio card needs more samples so swap the

 self.

 return (self. .tostring(),

.paContinue)

 def do_sample(self, int i):

 cdef int out_sample = 0

 # Go through each note and let it add to the

 for note in self.notes:

 if note.

 self.notes.

 else:

 out_sample += note.next_sample() >> 3

 self.newbuf[i] = out_sample

 def (self):

 cdef int i

 while self.exit.is_set() == False:

 # For each sample we need to generate

 for i in range(0 .BUFSIZE):

 self.do_sample(i)

 # samples

 self.more_samples.clear()

 self.more_samples.wait()

 def start(self):

 self.stream_init()

 t = threading.Thread(target=self.

 t.start()

 def freq_on

 n = Note(self. .SAMPLERATE,

 freq)

 print n

 self.notes.append(n)

 def

 # Set the ADSR state to release

 for n in self.notes:

 if n.freq == freq:

 n.adsr.state =

 def note_on(self, n):

 self.freq_on(self.midi_table.get_note(n))

 self.notes_on.append(n)

Full code listing (Cont.)

Step 11

Step 12

Python introduces a number of performance issues

compared to a native synthesiser implementation that

is written in C or C++. Cython has been used in our

implementation to try and mitigate these issues but it is

nowhere near enough. As a rough comparison, our expert

worked on a synthesis project targeting 100 Mhz ARM

processors that were programmed in C and could get

around 30 notes of polyphony, compared to three in this

implementation on a 900 Mhz ARM core.

A major issue is that the sound card uses 16-bit signed

integers to represent a sample. However, Python doesn’t

natively support this type. To pass the data to the audio

library it needs to be encoded from an array of integers into

a byte string. Then at the other end, the Python that talks

to the audio library will decode this byte string back into

an integer array. If it was written in C or another lower-level

language like C++ or Rust, the sample could be passed

almost directly to the audio hardware.

Another issue is that Python has a large function call

overhead. In compiled languages, this can be optimised

out by compiling function calls in line with the caller

(effectively, copying the code from the function into the

caller). Variable access also has overhead because of all

the type checking required. There is also the overhead

of the garbage collector, which destroys

objects when there are no longer

references to them.

Performance
issues

A major issue is that the sound
card uses 16-bit signed integers to
represent a sample. However, Python
doesn’t support this type

SOFTWARE

102

103

CODE A SIMPLE SYNTHESISER

 def (self, n):

 self. .midi_table.get_note(n))

 self.notes_on.remove(n)

 def toggle_note(self, n):

 if n in self.notes_on:

 print �note {0 .format(n)

 self.

 else:

 print �note {0 .format(n)

 self.note_on(n)

class KBInput:

 def __init__(self, synth):

 self.synth = synth

 self.keymap = {�a� : 60, �w� : 61, �s� : 62,

 �e� : 63, �d� : 64, �f� : 65,

 �t� : 66, �g� : 67, �y� : 68,

 �h� : 69, �u� : 70, �j� : 71,

 �k�: 72}

 self.notes_on = []

 @staticmethod

 def getch():

 fd = sys.stdin.

 old_settings = termios.tcgetattr(fd)

 try:

 tty.setraw(fd)

 ch = sys.stdin.read(1)

 :

 termios.tcsetattr(fd, termios.TCSADRAIN,

 old_settings)

 return ch

 def loop(self):

 while True:

 c = self.getch()

 if c == �q�:

 self.synth.stop()

 return

 if c in self.keymap:

 n = self.keymap[c]

 self.synth.toggle_note(n)

if __name__ ==

 s = Synth()

 s.start()

 kb = KBInput(s)

 kb.loop()

Full code listing (Cont.)

Step 12

Step 13

14 Put it all together
The main function of the program creates an instance

of the synth class and then starts the audio stream and synth

loop thread. The start function will then return control to the

main thread again.

At this point we create an instance of the KB input class

and enter a loop that gets characters and toggles the

corresponding MIDI note on or off. If the user presses the

Q key, that will stop the synth and end the input loop. The

program will then exit.

15 Compile the code
Exit your editor and run the compile script by typing

the following command:

 ./compile.sh

This may take around 30 seconds, so don’t worry if it isn’t

instant. Once the compilation has fi nished, execute the synth.

bin command using:

 ./synth.bin

Pressing keys from A all the way up to K on the keyboard will

emulate the white keys on the piano. If you press a key again

the note will go off successfully. Above The simple user interface. Notice how the step size in the wavetable varies with frequency

12 Turn on notes
There are both note_on/off and freq_on/off functions

that enable either MIDI notes or arbitrary frequencies to be

turned on easily. Added to this, there is also a toggle note

function which keeps track of MIDI notes that are on and turns

them off if they are already on. The toggle note method is used

specifi cally for keyboard input.

13 Add keyboard input
For keyboard input, we needed the ability to get a

single character press from the screen. Python’s usual input

code needs entering before returning to the program. Our

code for this is inspired by: https://code.activestate.com/

recipes/577977-get-single-keypress.

There is a mapping of letters on a keyboard to MIDI note

numbers for an entire keyboard octave. We have tried to

match the letter spacing to how a piano is laid out to make

things easier. However, more innovative methods of input are

left as an exercise to the reader.

11 Synth loop
The start method of the synth class initialises the audio

hardware and then starts the synth_loop method in its own

thread. While the exit event is set to false, the do_sample

function is called.

The do_sample function loops through the notes that are

currently turned on and asks for a sample from each one. These

samples are shifted right by three (ie divided by 2^3) and added

to out_sample. The division ensures that the output sample

can’t overfl ow (this is a very primitive method of adding notes

together, but it works nonetheless).

The resulting sample is then put in the sample buffer. Once

the buffer is full, the more_samples condition is cleared and

the synth_loop thread waits to be notifi ed that the buffer it

has just built has been sent to the audio card. At this point, the

synth can fi ll up the buffer that has just fi nished playing and

the cycle continues.

Enhance Minecraft
with your Pi

Modify a
retro radio

104

114 How I made: RasPi

Terrarium controller
Investigate an environmental control system

116 Make a RasPi sampler
Build your own looping drum machine

120 Transform your Pi into a
micro oscilloscope
Transform your RasPi with BitScope Micro

124 How I made: Pi Glove 2
Control lights, send texts and more

126 Assemble a Minecraft
power move glove
Enhance your game with this cool hack

134 Add gesture control to
your Raspberry Pi
Easily add touch controls to your projects

138 How I made: Joytone
A new type of electronic keyboard

140 Build a Connect 4 robot
Try your hand at outsmarting a robot

142 Program a quadcopter
Take to the skies with this gadget

148 20 Raspberry Pi
hacking projects
Repurpose everyday items

Electronics
106 Build a Raspberry Pi

 car computer
 Make your own touchscreen navigator

148 126

130 Build a complex
LED matrix
Program your own light system

105

Assemble a
LED display

Fly a Pi-powered
quadcopter

Try out a light
gun game

Add gesture
control to your Pi

Turn your Pi into
an oscilloscope

Build a motorised
alarm clock

142

148

130

120

148

134

106

ELECTRONICS

107

Cars are getting clever. These days, with smart navigation

interfaces built into new cars, you don’t need to go out and

buy yourself a TomTom to get help with directions. But if

you’ve got a Raspberry Pi then you don’t even need to buy

that – let alone a new car!

In this project we will show you how to build your own

car computer with your Pi, a quality touchscreen like the

9-inch model from SainSmart that we’re using here, and a

few other bits like a GPS module and USB 3G modem. Your

CarPi will be able to use open source navigation software

Navit to show your route map on screen, plus speech

synthesis to read out directions, and it will also be able to

check your location and give you weather reports. It’ll work

as a music player too, of course.

It’s an ambitious project, but you will gain a solid

understanding of custom-made interfaces, navigation

software and geolocation data, touchscreen calibration,

speech synthesis and more. While you don’t have to use

the same SainSmart screen as us, we do recommend it for

this project as it is one of the few large touchscreens out

there for the Pi. There are more improvements at the end

too, so check the components list, make sure you’ve got

everything and let’s get started!

Build a Raspberry
Pi car computer

Make your own touchscreen navigation
system that gives directions, local weather

reports and plays music

BUILD A RASPBERRY PI CAR COMPUTER

108

01 Basic confi guration
Boot up your Raspberry Pi and expand the fi lesystem

using raspi-confi g. Go to Advanced Options and disable the

Serial connection – you’ll need this to talk to the GPS module

later. In raspi-confi g, enable X at boot as the pi user. Say Yes to

reboot. Once rebooted, ensure your packages are up to date with:

 sudo apt-get update

 sudo apt-get upgrade

04 Connect the screen
The SainSmart screen doesn’t come with any written

instructions. Instead there is a YouTube video on their website

with details about how to put it together: bit.ly/1DF6eJJ. The

important part is that the DC power supply should be 12V.

03 Install navigation software
Begin to install the Navit navigation software by entering:

 sudo apt-get install navit gpsd gpsd-clients espeak

 sudo nano /etc/default/gpsd

 set START_DAEMON=“true”

…and set:

 DEVICES=”/dev/ttyAMA0”

Start the GPS daemon with:

 sudo /etc/init.d/gpsd start

You can check it’s working by looking at the GPS data with:

 cgps -s

02 Connect GPS module
Solder the pin headers onto the Adafruit GPS module.

You can also solder the battery connector which is used to keep

the device partially active, giving a faster fi x. You only need to use

4 pins: 3.3V, ground, serial transmit and serial receive. Power the

Pi off again before connecting anything.

As we are using GPS, the antenna will have to go outside or

under a window to gain signal. Connect the antenna to the board

and power everything back on. The light on the GPS module will

fl ash frequently while fi nding a fi x. Once it has one, it will blink

every 15 seconds.

05 Set the screen resolution
We will have to force the correct resolution (1024x600)

for the screen by editing /boot/confi g.txt with sudo. To do so,

add the following options:

 framebuffer_width=1024

 framebuffer_height=600

 hdmi_force_hotplug=1

 hdmi_cvt=1024 600 60 3 0 0 0

 hdmi_group=2

 hdmi_mode=87

For the changes to properly take effect you will need to reboot

with sudo reboot.

06 Download kernel source
To start the touchscreen, you need to compile an

extra kernel module to support it. The program rpi-source

(github.com/notro/rpi-source/wiki) will fi nd the source of

your kernel. Install rpi-source with:

 sudo wget https://raw.githubusercontent.com/notro/

 rpi-source/master/rpi-source -O usr/bin/rpi-source

 && sudo chmod +x /usr/bin/rpi-source && /usr/bin/

 rpi-source -q -tag-update

Then run rpi-source to get the source of the running kernel.

Above We’re using
Adafruit’s excellent
GPS Breakout kit
here: bit.ly/1G8X2gw

ELECTRONICS

109

#!/usr/bin/env python2

import os, sys, requests, pygame

from gps import *

from pygame.locals import *

class WeatherClient:

 apikey = “7232a1f6857090f33b9d1c7a74721”

 @staticmethod

 def latlon():

 gpsd = gps(mode=WATCH_ENABLE)

 # Needs better error handling

 try:

 while True:

 report = gpsd.next()

 if report[‘class’] == ‘TPV’:

 gpsd.close()

 return report[‘lat’], report[‘lon’]

 except:

 return None, None

 @staticmethod

 def usefuldata(j):

 # Returns a string of useful weather data from a LOT of json

 d = j[‘data’][‘current_condition’][0]

 out = “Now - Temp: {0}C, Feels Like: {1}C, Description: {2}\n”\

 .format(d[‘temp_C’],

 d[‘FeelsLikeC’],

 d[‘weatherDesc’][0][‘value’])

 hourly = j[‘data’][‘weather’][0][‘hourly’]

 hour_count = 1

 for h in hourly:

 out += (“+{0}hr - Temp: {1}C, Feels Like: {2}C, Chance of Rain:”

 “ {3}%, Description: {4}\n”)\

 .format(hour_count,

 h[‘tempC’],

 h[‘FeelsLikeC’],

 h[‘chanceofrain’],

 h[‘weatherDesc’][0][‘value’])

 hour_count += 1

 # Rstrip removes trailing newline

 return out.rstrip()

 @staticmethod

 def update():

 errstr = “Error getting weather data”

 lat, lon = WeatherClient.latlon()

 if lat == None or lon == None:

 return errstr

 api_req = (“http://api.worldweatheronline.com/free/v2/weather.ashx”

 “?q={0}%2C{1}&format=json&key={2}”).format(lat, lon,

 WeatherClient.apikey)

 r = None

Full code listing07 Update GCC

Recent Raspberry Pi kernels are

compiled with GCC 4.8. Raspbian only

comes with 4.6 so you will have to install

4.8 to continue with the following steps.

Do this by entering:

 sudo apt-get install -y gcc-4.8

 g++-4.8 ncurses-dev

Then you have to set GCC 4.8 as

the default:

 sudo update-alternatives

 --install /usr/bin/gcc gcc /usr/

 bin/gcc-4.6 20

 sudo update-alternatives

 --install /usr/bin/gcc gcc /usr/

 bin/gcc-4.8 50

 sudo update-alternatives

 --install /usr/bin/g++ g++ /usr/

 bin/g++-4.6 20

 sudo update-alternatives

 --install /usr/bin/g++ g++ /usr/

 bin/g++-4.8 50

08 Pick the module to compile

Rpi-source puts the kernel

source in a folder called ‘linux’. To

choose the USB Touchscreen Driver,

enter the following:

 cd linux

 make menuconfig

 Device Drivers -> Input device

 support -> Generic input layer

 (needed for keyboard, mouse,

 …) -> Touchscreens (press space

 to include) -> USB Touchscreen

 Driver (press M to make module)

Once you’ve done that, you then need

to make sure you save your changes as

‘.config’ and run scripts/diffconfig to see

the differences.

09 Compile and install

the module

Now you need to compile and install the

module. Do so by entering:

 make prepare

 make SUBDIRS=drivers/input/

 touchscreen modules

 sudo make SUBDIRS=drivers/input/

 touchscreen modules_install

 sudo depmod

If you unplug and reconnect the

touchscreen, it should work fine but it

will probably need calibrating.

BUILD A RASPBERRY PI CAR COMPUTER

110

10 Calibrate the touchscreen
At this point, you can easily calibrate the touchscreen by

entering the following:

 cd /etc/X11

 sudo mkdir xorg.conf.d

 cd xorg.conf.d

 sudo nano 99-calibration.conf

…with the following content:

 Section “InputClass”

 Identifier “calibration”

 MatchProduct “eGalax Inc. USB TouchController”

 Option “SwapAxes” “1”

 Option “InvertX” “1”

 EndSection

Invert X actually inverts Y because the axes have been swapped

around. Reboot again for these changes to occur. Now the

calibration is roughly correct, download an input calibrator that

Adafruit have packaged already.

 wget http://adafruit-download.s3.amazonaws.com/

 xinput-calibrator_0.7.5-1_armhf.deb

 sudo dpkg -i xinput-calibrator_0.7.5-1_armhf.deb

 DISPLAY=:0.0 xinput_calibrator

DISPLAY=:0.0 is useful because you can run the program from

any terminal (including an SSH session) and have it appear on

the touchscreen. Touch the points on the screen as prompted.

Once the program is fi nished, you should get an output that is

similar to the following:

 Option “Calibration” “84 1957 270 1830”

Add it to the ‘99-calibration.conf’ fi le that we created earlier

just below the other Option entries.

11 Download maps
Navit needs maps; download them from maps.navit-

project.org. You can either use the web browser on the Pi or

download the map from another machine and copy it using

scp. Use the predefi ned area option to select where you live.

The smaller the area that you pick, the less data you will have to

process. Here the UK has a map size of 608 MB. Now move the

map to the navit folder:

 mkdir -p /home/pi/.navit/maps

 mv /home/pi/Downloads/$your_map /home/pi/.

 navit/$country.bin

For example:

 mv /home/pi/Downloads/osm_bbox_-9.7,49.6,2.2,61.2.bin

 /home/pi/.navit/maps/UK.bin

12 Navit confi guration
Sudo-edit /etc/navit/navit.xml with your favourite

editor. Search for openstreetmaps. Now disable the sample

map above, enable the openstreetmap mapset and set the

data variable to where you just moved your map. In this case

it looks like this:

 <!-- Mapset template for openstreetmaps -->

 <mapset enabled=“yes”>

 <map type=“binfile” enabled=“yes” data=“/home/

 pi/.navit/maps/UK.bin”/>

 </mapset>

Then search for osd entries similar to:

 <osd enabled=“yes” type=“compass”/>

…and enable the ones you want – we recommend enabling

them all. You may want to zoom in closer than the default map

layout. A zoom value of 64 is useful.

We’ve looked at
the PiTFT and the
HDMIPi before,
but the SainSmart
touchscreen
we’re using here is
uniquely suited to
many embedded
projects. It’s larger
than the PiTFT but
also without the
large bezels of the
HDMIPi – and it’s
incredibly thin –so
it’s the kind of thing
that is really useful
for installation
projects, whether
that’s something as
simple as a photo
slideshow in a real
picture frame or a
home automation
control interface
embedded into a
cupboard door.

Embed
the screen

SainSmart’s
9-inch HDMI/VGA
touchscreen (bit.
ly/1Ciu4H9) has a
fantastic display
and is perfect
for all sorts of
Pi projects

The screen
control panel that

comes with the
SainSmart screen

enables you to
easily change the

display settings
(i.e. brightness,

contrast, etc) as
well as the input
(i.e. HDMI, VGA,

AV1, etc)

As well as the main
controller board,
the touch screen

is connected to
a four-line USB

controller which
then plugs into the

Pi’s USB port

Adafruit’s Ultimate
GPS Breakout kit
provides Navit
and the weather
function with the
location data that
they require

ELECTRONICS

111

13 Sound configuration
Before configuring speech

support for Navit, configure the external

sound card. You have to stop the

Broadcom module from loading and

remove some Raspberry Pi-specific ALSA

(Advanced Linux Sound Architecture).

To do this, sudo-edit /etc/modprobe and

comment out (i.e. prefix with a #):

 snd-bcm2835

Then run:

 sudo rm /etc/modprobe.d/alsa*

Reboot for the changes to take effect.

Use alsamixer to set the volume on the

if it’s too quiet.

15 Create speech script
Navit supports speech by

running an external script and passing

the text to speak as an argument.

Create one using:

 cd /home/pi/.navit

 wget http://liamfraser.co.uk/

 lud/carpi/chime.wav

 touch speech.sh

 chmod +x speech.sh

Now edit speech.sh:

 #!/bin/bash

 aplay -r 44100 /home/pi/.navit/

 chime.wav

 espeak -vmb-en1 -s 110 -a 150

 -p 50 “$1”

Finally, test it with:

 ./speech.sh “Hello World”

14 Download a voice
The speech synthesis software

needs a voice and a proprietary

binary. You can get both by completing

the following steps:

 sudo mkdir -p /usr/share/

 mbrola/voices/

 wget http://www.tcts.fpms.ac.be/

 synthesis/mbrola/dba/en1/en1-

 980910.zip

 unzip en1-980910.zip

 sudo cp en1/en1 /usr/share/

 mbrola/voices

 wget http://www.tcts.fpms.ac.be/

 synthesis/mbrola/bin/raspberri_

 pi/mbrola.tgz

 tar zxvf mbrola.tgz

 sudo mv mbrola /usr/local/bin/

 try:

 r = requests.get(api_req)

 except requests.exceptions.RequestException as e:

 return errstr

 return WeatherClient.usefuldata(r.json())

class CarLauncher:

 def __init__(self):

 pygame.init()

 pygame.mixer.quit() # Don’t need sound

 screen_info = pygame.display.Info()

 self.screen = pygame.display.set_mode((screen_info.current_w,

 screen_info.current_h))

 pygame.display.set_caption(‘Car Launcher’)

 self.titlefont = pygame.font.Font(None, 100)

 self.wfont = pygame.font.Font(None, 30)

 self.w_text = None # Weather text

 def clean_background(self):

 background = pygame.Surface(self.screen.get_size())

 self.background = background.convert()

 self.background.fill((0, 0, 0))

 # Render title centered

 text = self.titlefont.render(“CarPi Launcher”, 1, (255, 255, 255))

 textpos = text.get_rect()

 textpos.centerx = self.background.get_rect().centerx

 self.background.blit(text, textpos)

 self.screen.blit(self.background, (0,0))

 pygame.display.flip()

 def main_menu(self):

 # btns maps Text -> Rectangles we can do collision detection on

 self.btns = {‘Music’ : None, ‘NAV’ : None, ‘Weather’ : None}

 item_num = 1

 for key in self.btns:

 text = self.titlefont.render(key, 1, (255,255,255))

 textpos = text.get_rect()

 max_width = self.background.get_rect().width / len(self.btns)

 center_offset = max_width * 0.5

 # This y pos puts buttons just below title

 textpos.centery = self.background.get_rect().centery / 2

 textpos.centerx = (max_width * item_num) - center_offset

 self.btns[key] = textpos

 self.screen.blit(text, textpos)

 item_num += 1

 pygame.display.flip()

 def select_rect(self, rect, text):

 # Colour a rect the user has clicked in green

 surface = pygame.Surface((rect.w, rect.h))

 surface.fill((0, 255, 0))

 # Now we have to draw the text over it again

 t = self.titlefont.render(text, 1, (255,255,255))

 surface.blit(t, (0,0))

 self.screen.blit(surface, rect)

 pygame.display.flip()

Full code listing

BUILD A RASPBERRY PI CAR COMPUTER

112

You will need to write your
own launcher for CarPi

17 Install the music player
MPD is the music player back-end and pympdtouchgui

is the front-end that needs installing manually:

 sudo apt-get install mpd ncmpcpp

 wget http://www.spida.net/projects/software/

 pympdtouchgui/pympdtouchgui-0.320.tgz

 tar zxvf pympdtouchgui-0.320.tgz

 cd pympdtouchgui-0.320/

 sudo python setup.py install

 # Fix hard coded path in software

 sudo ln -s /usr/local/share/pympdtouchgui/ /usr/

 share/pympdtouchgui

run sudo passwd to set a password for root. From a computer

with music on, run:

 scp -r music_folder root@pi_ip_address:/var/lib/

 mpd/music/

Then on the Pi, change the ownership of the music that

you just copied:

 sudo chown -R mpd:audio /var/lib/mpd/music

20 Install awesome window manager
Now you will need to write your own launcher for

CarPi, which will run full-screen. To ensure every application

is forced to full-screen, use awesome window manager in full-

screen mode.

 sudo apt-get install awesome

 sudo rm /etc/alternatives/x-session-manager

 sudo ln -s /usr/bin/awesome /etc/alternatives/x-

 session-manager

When changing the default x-session-manager, awesome will

be auto-started at boot instead of LXDE. If you reboot the Pi,

awesome should then load up automatically.

19 Update mpd music library
Ncmpcpp is a command line client for mpd. Type

ncmpcpp and press U to update the library. Press 3 to

browse the library and check the music is there, and press

Q to quit. Pressing 1 will select the help screen if you want

to do more.

16 Confi gure Navit for speech
The last part is simple. Edit the Navit confi g fi le again (/

etc/navit/navit.xml) and replace the following line:

 <speech type=“cmdline” data=“echo ‘Fix the speech

 tag in navit.xml to let navit say:’ ‘%s’” cps=“15”/>

…with:

 <speech type=“cmdline” data=“/home/pi/.navit/

 speech.sh %s” cps=“10” />

Now you can run Navit with DISPLAY=:0.0 navit and have

fun experimenting.

18 Copy music
Scp (secure copy protocol) was used here to copy

music. First get the Pi’s IP address by running ip addr. Then

It is defi nitely best
to put this project
together in a clean
workspace so that
you can clearly
see what you’re
working with and
ensure everything is
correctly wired and
soldered, but the
point of the project
is to make this setup
portable so that you
can put it in your
car and use it on
the road. You could
install everything
into a single, hand-
made enclosure or
customise a large
bought one, or you
could secure the
various parts inside,
for example, your
glovebox or car
doors. You’ll also
need to power both
the screen and your
Pi with a power pack
and ensure that
the GPS antenna is
fastened into a good
spot for signal.

Make it
mobile

Above The pympdtouchgui front-end for the
music player is surprisingly featureful

Above The Navit software comes with a host
of options built into its menu hierarchy

ELECTRONICS

113

 def reset(self):

 self.clean_background()

 self.main_menu()

 self.render_weather()

 def execute(self, path):

 os.system(path)

 # os.system blocks so by the time we get here application

 # has finished

 self.reset()

 def render_weather(self):

 if self.w_text == None:

 return

 # Get y starting at the bottom of the nav button

 margin = 10

 y = self.btns[‘NAV’].bottomleft[1] + margin

 for t in self.w_text.split(“\n”):

 line = self.wfont.render(t.rstrip(), 1, (255,255,255))

 line_rect = line.get_rect()

 line_rect.centerx = self.background.get_rect().centerx

 line_rect.y = y

 self.screen.blit(line, line_rect)

 y += margin + line_rect.height

 pygame.display.flip()

 def handle_events(self, events):

 for e in events:

 if e.type == QUIT:

 sys.exit()

 elif e.type == MOUSEBUTTONDOWN:

 pos = pygame.mouse.get_pos()

 # Check if it collides with any of the buttons

 for btn_text, rect in self.btns.iteritems():

 if rect.collidepoint(pos):

 self.select_rect(rect, btn_text)

 if btn_text == “NAV”:

 self.execute(“/usr/bin/navit”)

 elif btn_text == “Music”:

 self.execute(“/usr/local/bin/pympdtouchgui”)

 elif btn_text == “Weather”:

 self.w_text = WeatherClient.update()

 # Reset will render weather if string is populated

 self.reset()

 def loop(self):

 clock = pygame.time.Clock()

 self.reset()

 while 1:

 self.handle_events(pygame.event.get())

 # 5 fps is plenty

 clock.tick(5)

if __name__ == “__main__”:

 cl = CarLauncher()

 cl.loop()

Full code listing21 Install the requirements
for your launcher

The launcher is going to use a weather

API combined with location data

from the GPS receiver to give weather

updates when requested. The nicest

HTTP API for Python is requests, which

you can install by doing the following:

 sudo apt-get install python-pip

 sudo pip install requests

23 Start the launcher
automatically

Sudo-edit /etc/xdg/awesome/rc.lua and

move awful.layout.suit.max.fullscreen

to the top of the layouts list. Add the

following to the bottom of the fi le:

 awful.util.spawn_with_shell(“/

 home/pi/carlauncher/carlauncher.

 py”)

Now reboot again and the launcher

should come up automatically.

24 Future improvements
There are a number of

improvements that could be made

to the base project at this point:

• Make the launcher switch between

applications rather than start them

again each time

• Make the launcher look better

aesthetically with icons

• Use Mopidy instead of MPD so you

can use Spotify

• Further Navit confi guration to make

it more featureful

• An SSD or USB fl ash drive for storage

to make things quicker

22 Write the launcher code
Creating the code itself is pretty

self explanatory, but you can use our

ready-made version by downloading the

CarPi package from FileSilo.co.uk and

extracting carlauncher/carlauncher.py.

BUILD A RASPBERRY PI CAR COMPUTER

114

How I made:
Terrarium controller
Keep plants or reptiles at optimal temperature with this
automated terrarium controller project

What role does the Raspberry Pi play in this project??

The Raspberry P is essentially the brains of the whole thing.

In terms of the raw computational power that’s required, the

Raspberry Pi 3 is hugely overpowered for this project. An Arduino

or Raspberry Pi Zero would probably have served just as well. I

chose the Pi 3 primarily because I wanted the flexibility to add new

components in the future. You could build a small alphanumeric

screen to display a read-out of the current conditions; install a

soil sensor to monitor your plants’ moisture levels; design a web

Tom’s project is
fairly unique, but it’s
very much possible
to build your own
Raspberry Pi heating
monitor. While the
finished product
doesn’t include the
complexity of the
terrarium controller,
it certainly gets
the job done. Head
across to http://bit.
ly/1g3AhR6 for the
full tutorial.

When did you decide you wanted to build a terrarium?

I’d built my terrarium to grow tropical plants, but soon realised

that it couldn’t maintain a stable temperature. The bulbs

provided enough heat, and I had a cooling system for when it got

too warm – the problem was, the cooling needed to run almost

continuously on hot days but hardly at all on cold days.

All the terrarium controllers on the market were either

mechanical timers or overkill (huge units designed for

greenhouses). I needed a simple controller to monitor the

conditions, switch mains-powered devices on or off as required,

and plot my data onto the Internet Of Things service ThingSpeak.

Could you give us an insight into the development process?

It took me several weekends to order all the components, write

the Python scripts, and assemble a working prototype. All the

required software is available via the Python Package Index or

GitHub. Adafruit maintains a library for reading DHT sensors,

the GPIO Zero library can be used to control Energenie mains

sockets, and the Requests HTTP library can be used to push your

data to the cloud.

I initially wired everything together using a breadboard, duct-

taped it to the terrarium, and only soldered it together after a

successful trial run. It was then that I realised the same design

might be useful for a snake vivarium, so I decided to write the

tutorial and stick my scripts up on GitHub.

Did you face any problems?

For a couple of weeks the project became a bit of an obsession,

and I think my wife worried I was going crazy. I’d ordered lots of

the terrarium components from an online hydroponics store, and

I think my neighbours suspected I was rigging up a system for

growing drugs!

Other than that, it was plain sailing. The main technical issue

was that the transmitter for the Energenie remote sockets is

designed to sit directly on the Raspberry Pi’s GPIO, occupying

almost the entire header and leaving no power pins for other

components, like the temperature sensor. To avoid this problem,

you can use an extra-short ribbon cable of jumper wires to

connect the GPIO pins which are actually needed directly to their

respective sockets on the transmitter. This way, you’ve still got

room for your sensor and for any other components you want to

add in the future.

How was i implement ing things like temperature and

humidity control?

The AM2302 temperature and humidity sensor – which is a wired

version of the DHT22 – has been great so far. It costs less than £10,

provides accurate readings, and uses minimal power. I’ve heard

that prolonged exposure to the high moisture levels common

to many terrariums and amphibian enclosures may eventually

reduce the accuracy of the humidity reading, but it’s been fine.

As for controlling temperature and humidity, this can be done

using any mains-controlled components. Heating pads designed

for snake enclosures and cheap computer fans can be positioned

and then activated/deactivated when the temperature or humidity

reaches your chosen thresholds. It isn’t actually as difficult as you

might think.

Do you have any advice for anyone interested in recreating

your project or working on something similar?

I’d say it’s a great project for anyone who owns a terrarium or reptile

enclosure. It should also be a good first serious project for children,

especially given the number of ways it can be extended. I certainly

learnt a lot while developing it.

The basic design could be adapted for any situation where you

want to activate or deactivate mains-powered devices depending

on ambient conditions. There are also many things you could

do with the data being pushed to the cloud –ThingSpeak offers

a range of MATLAB visualisations and if-this-then-that style

actions. There really are countless possibilities for what can be

done here.

interface or app to control your mains sockets remotely; or wire a

spare GPIO pin to an ultra-bright LED mounted in the lid for a night-

time moonlight effect.

Have you got any other Raspberry Pi projects that you are

currently working on? What do you think of it?

I love working with the Raspberry Pi. It’s a great device, and it has

an incredibly active and helpful community. My next project is

a remote-controlled cat feeder. Most of the cat feeders on the

market are flimsy – no match for my two cats, who are fat and

strong – and based on timers.

I want to build a device that dispenses a portion of food based

on a signal from my phone. The goal is for cat owners to be able

to feed their pets remotely when they’re working late or away

travelling for a day.

I chose the Pi 3 because
I wanted the flexibility to
add new components

Tom Bennet
by day is an SEO
consultant based
in London, but in
his spare time he
loves pushing the
boundaries of the
Raspberry Pi.

Tom has gone to the
trouble of putting a
detailed tutorial of
the project on his
blog over at www.
bennet.org for
anyone interested
in building their
own controller.
You can also find
all the necessary
code available at
his GitHub page:
https://github.com/
tombennet

ELECTRONICS

Like it?

Further
reading

115

Avoid electrocution
Using relays can be dangerous when
controlling mains electricity, but by
using Energenie’s Pi-mote starter
kit, the action can instead be remote
controlled. Various heating timers
and a routine can then safely be set
for the terrarium

Sensor wire
The main sensor wires run through
the top of the terrarium and are
coated with heat shrink tubing. Due
to the number of wires involved, and
the humidity from the terrarium,
heat shrink tubing is the best sort
of material to keep them together
without damaging them

AM2302 sensor
The first component that is wired
to the Pi’s GPIO is the combined
temperature and humidity sensor.
While it’s predominantly cheaper than
many terrarium sensors on the market,
it’s just as easy to automate whenever
you see fit

Mount the controller
In Tom’s project, the terrarium controller
is mounted to the rear of the terrarium
itself and is secured with adhesive-
backed Velcro. Not only does it allow
easy access if a problem arises, it’s also
ideally placed for all subsequent wiring
to and from the terrarium

Components list
 AM2302 temperature and

humidity sensor

 Energenie Pi-mote

starter kit

 Male-female jumper wire

 Solid core prototyping wire

 Heat shrink tubing

 Small suction cup

 Adhesive backed Velcro

Left A small suction cup helps fasten the
sensor to the side of the terrarium. While
industrial tape can be used, the humidity may
cause it to unwrap quickly

Right The controller is fixed to the back of
the terrarium for both easy access and its
convenient location for sensor wire placement

HOW I MADE: TERRARIUM CONTROLLER

ELECTRONICS

116

Build your own looping drum machine
with only 200 lines of code!

Make a Raspberry
Pi sampler

In this tutorial we combine electronics, music and

programming knowledge to create a simple sampler with

looping capabilities. The implementation used in this article has

three drum sounds as the samples, but it is trivial to add more

until you run out of GPIO pins.

Before we start, I’ll cover some basic musical terms. Music is

split into bars. There are a certain number of beats in a bar. This

sampler uses the 4/4 time signature, which means there are 4

beats in each bar. Tempo is the speed at which music is played,

and it is measured in beats per minute (bpm). A metronome is an

audible tone that is heard at the start of every beat.

Quantization is the process of aligning notes to beats, or exact

fractions of a beat, and a quantization value is usually given in the

form 1/8. This means that there are eight possible places in a bar

where a note can be played. When the sampler is recording and

a sample button is pressed, we store the sample at the current

position in the bar with the accuracy of the quantize value.

There’s a lot to cover, so let’s get started.

01Connect LEDs
The circuit diagram is an LED that can be turned on and

off with a GPIO output. The orange wire is the connection from

the GPIO output. This then goes through a 220 resistor to limit

the current draw to a safe level. This current fl ows through the

positive leg of the LED and then back to ground. We need nine

LEDs for this project.

What you’ll need
 Latest Raspbian image

 raspberrypi.org/downloads

 At least one breadboard

 Push buttons

 LEDs

 Female-to-male GPIO
 jumper cables

 Male-to-male GPIO
 jumper cables

Left Extra breadboards are
used here to keep the main
breadboard as free from
wires as possible

MAKE A RASPBERRY PI SAMPLER

117

02
Wire up buttons

The second circuit we need is a

push button. The purple wire goes to a

GPIO input. There is a 10K pull down

resistor to ground, which represents

a logical 0. When the push button is

pressed, the 3.3V supply representing a

logical 1 is connected to the purple wire.

The electricity takes this path because it

has less resistance than the path to

ground. We need two buttons for record

and undo, and then as many buttons as

you like for samples (three drum samples

are provided).

03 Download samples

Create a few folder for the

project called pisampler. Then download

and unzip the sounds:

 mkdir pisampler

 cd pisampler

 wget http://liamfraser.co.uk/lud/

pisampler/sounds.zip

 unzip sounds.zip

There will now be a folder called sounds

with some samples in. The file format for

samples is .wav audio, Microsoft PCM,

16 bit, stereo 44100 Hz. Mono will work

too. Any samples can be converted to this

format with Audacity by exporting them as

a .wav file.

04 Import required libraries

Create a file called pisampler.

py in your favourite editor. The first thing

we need to do is import the required

libraries and set some configuration

values. A key option is debounce: the time

to wait before a button can be pressed

again to stop accidental presses from

contact bounce.

05 Create a sample class

We’re going to use a class to

represent each sample. It's going to need

a few things: the pin that the sample

button is connected to, the name of the

sound file, and a reference to the instance

of the sampler class. We haven’t created

the sampler class yet, but the sample

will need to be able to tell if the sampler is

recording or not, and have access to the

data structure that recordings are stored in

to add itself to it if necessary.

The other thing that we need to do is set

the GPIO pin to an input, and add an event

listener for when the button is pressed. We

set callback (the function to be executed

when the button is pressed) to a function

called self.play_btn, which will play a sound

import RPi.GPIO as GPIO

import time

import pygame

import os

beat_leds = [2, 3, 4, 17]

bar_leds = [27, 22, 10, 9]

record_led = 11

record = 19

undo = 26

debounce = 200 # ms

class Sample(object):

 def __init__(self, pin, sound, sampler):

 self.sampler = sampler

 self.name = sound

 self.sound = pygame.mixer.Sound(os.path.join('sounds', sound))

 self.pin = pin

 GPIO.setup(pin, GPIO.IN)

 GPIO.add_event_detect(self.pin, GPIO.RISING, callback=self.play_btn,

 bouncetime=debounce)

 def play_btn(self, channel):

 self.sound.play()

 s = self.sampler

 if s.recording:

 s.recording_data[s.bar_n][s.quantize_n].append({'loop' : s.loop_count,

 'sample' : self})

class PiSampler(object):

 def __init__(self, tempo=80, quantize=64):

 pygame.mixer.pre_init(44100, -16, 1, 512)

 pygame.init()

 self.quantize = quantize

 self.tempo = tempo

 self.recording = False

 self.record_next = False

 self.metronome = False

 self.met_low = pygame.mixer.Sound(os.path.join('sounds', 'met_low.wav'))

 self.met_high = pygame.mixer.Sound(os.path.join('sounds', 'met_high.wav'))

 self.met_low.set_volume(0.4)

 self.met_high.set_volume(0.4)

 self.samples = []

 self.recording_data = []

 for i in range(0, 4):

 bar_arr = []

 for i in range(0, quantize):

 bar_arr.append([])

 self.recording_data.append(bar_arr)

 GPIO.setmode(GPIO.BCM)

 for pin in beat_leds + bar_leds + [record_led]:

 GPIO.setup(pin, GPIO.OUT)

 GPIO.setup(record, GPIO.IN)

 GPIO.add_event_detect(record, GPIO.RISING,

 callback=self.record_next_loop,

 bouncetime=debounce)

Full code listing (Cont. on next page)
Step 04

Step 05

Step 06

118

06 The sampler init method
Here’s the start of the sampler class. The

last value in the Pygame mixer init is the buffer size.

You might need to increase this to 1024 or higher if

you have audio dropouts. We create some variables

to store recording state. Metronome sounds are then

added and their volume lowered. We also create a list

to hold our samples in.

We create nested arrays to represent recorded

sample presses. There is an array for each bar. Each

bar has an array for each possible quantize value.

The default value of 64 gives us 64 possible places to

store a sample hit per bar.

Finally, we set up the LED pins, and the pins for the

record and undo buttons.

07 The tempo property
The tempo variable is actually a property with a

custom setter. This means when a value is assigned, it

does a custom action. In our case, we need to calculate

how often we need to check for recorded notes to play

in the main loop that we’ll write later.

08 Helper functions
There are a few helper functions in the

class. One of them simply adds a sample to the list of

samples. Another sets a variable to trigger recording at

the start of the next loop. There is also a function which

turns the red LED on when the recording variable is set

to true. Now we'll jump forward and take care of the

main loop towards the end of the full code listing.

09 Start the main loop
The main loop doesn’t actually have to do

any work at all to play sounds, as that’s done by the

GPIO event handlers. The main loop is used to play the

metronome, update the state about which bar/beat/

quantize we are currently on, update the LEDs and deal

with recording if necessary.

Before the loop, we create variables to track the

state. The last recorded loop is a list that we will use

as a stack. A stack is a last in/first out data structure,

allowing us to undo recordings multiple times by

removing each sample that was recorded when the

loop count was the value on the top of the stack.

If we’re at the start of a new beat then we use a

function called do_leds that we haven’t created yet.

As the LEDs work in the same way (a block of four LEDs

where only one is turned on), we can use the same

function twice and just pass a different set of pins,

and the index of the LED we want to turn on. We then

call the do_metronome function which will play the

appropriate metronome sound.

We then do some recording logic which starts

recording if we should be recording, and stops

recording if we have just been recording, adding the

 GPIO.setup(undo, GPIO.IN)

 GPIO.add_event_detect(undo, GPIO.RISING,

 callback=self.undo_previous_loop,

 bouncetime=debounce)

 @property

 def tempo(self):

 return self._tempo

 @tempo.setter

 def tempo(self, tempo):

 self._tempo = tempo

 self.seconds_per_beat = 60.0 / tempo

 self.quantize_per_beat = self.quantize / 4

 self.quantize_seconds = self.seconds_per_beat / self.quantize_

per_beat

 def add(self, sample):

 self.samples.append(sample)

 @property

 def recording(self):

 return self._recording

 @recording.setter

 def recording(self, value):

 self._recording = value

 GPIO.output(record_led, value)

 def record_next_loop(self, channel):

 self.record_next = True

 def play_recording(self):

 for sample_dict in self.recording_data[self.bar_n][self.

quantize_n]:

 if sample_dict['loop'] != self.loop_count:

 sample_dict['sample'].sound.play()

 def undo_previous_loop(self, channel):

 if len(self.last_recorded_loop) == 0:

 print "No previous loop to undo"

 return

 print "Undoing previous loop"

 loop = self.last_recorded_loop.pop()

 for bar in self.recording_data:

 for quantize in bar:

 removes = []

 for sample in quantize:

 if sample['loop'] == loop:

 removes.append(sample)

 for sample in removes:

 quantize.remove(sample)

 def do_leds(self, leds, n):

 count = 0

 for led in leds:

 if count == n:

 GPIO.output(led, True)

 else:

Full code listing (Cont.) and add it to the recording data if we are recording.

It will become abundantly clear how this works once

we’ve written the sampler class. Note that the GPIO

event handler passes the pin that the event handler was

triggered on, hence the channel variable that is present

but never used.

Step 06

Step 07

Step 08

Step 13

Step 11

ELECTRONICS

119

11 Lighting LEDs
The LED code is simple. It simply goes through

each pin in the list you provide it with and lights up the

appropriate LED, ensuring that all of the others are

turned off.

12 The metronome
The metronome simply plays a high tone on the

first beat or a lower tone on the remaining beats if the

metronome variable is set to true.

13 The recording code
Looking back at the sample class we created at

the start, you can see that if recording is enabled, and

a note is pressed, then we add a dictionary to the list

of samples for the current bar at the current quantize

point. The dictionary contains a reference to the

sample so that it can be played, and also the loop that

it was added on so that it can be removed if necessary.

The code for playing and undoing recordings can be

seen below.

Note that we directly play the sound rather than

using the btn_play function so that we don’t trigger the

recording logic when playing recorded sounds.

The pop function in undo_previous_loop removes

the last thing that was added to the stack, which will

be the loop count. We then go through every possible

recording data point and remove anything recorded on

the loop we want to remove.

14 Finishing it off
To finish it off, we need to add a main function

where we load some samples in and then start the

main loop. Remember that you need to run the code

with sudo python2 pisampler.py because we need sudo

to access the GPIO. Happy jamming!

15 Possible improvements
There are a number of improvements that

could be made to the sampler. Here are a few to get

you started:

• A button to turn the metronome on and off

• The ability to time stretch samples (such as chords)

to fit with the tempo

• The ability to pitch shift samples on the fly

• Using a shift register to use less pins when lighting

the LEDs, allowing more inputs

• The ability to save recorded beats so that they can

be loaded and played back

 GPIO.output(led, False)

 count += 1

 def do_metronome(self):

 if not self.metronome:

 return

 if self.beat_n == 0:

 self.met_high.play()

 else:

 self.met_low.play()

 def run(self):

 self.loop_count = 0

 self.last_recorded_loop = []

 self.bar_n = 0

 self.beat_n = 0

 self.quantize_beat_n = 0

 self.quantize_n = 0

 while True:

 if self.quantize_beat_n == 0:

 self.do_leds(beat_leds, self.beat_n)

 self.do_leds(bar_leds, self.bar_n)

 self.do_metronome()

 if self.quantize_n == 0 and self.bar_n == 0:

 if self.record_next:

 self.recording = True

 self.record_next = False

 elif self.recording:

 self.recording = False

 self.last_recorded_loop.append(self.loop_count)

 self.loop_count += 1

 self.play_recording()

 time.sleep(self.quantize_seconds)

 if self.quantize_beat_n == self.quantize_per_beat - 1:

 self.quantize_beat_n = 0

 self.beat_n += 1

 else:

 self.quantize_beat_n += 1

 if self.quantize_n == self.quantize - 1:

 self.quantize_n = 0

 else:

 self.quantize_n += 1

 if self.beat_n == 4:

 self.beat_n = 0

 self.bar_n += 1

 if self.bar_n == 4:

 self.bar_n = 0

if __name__ == "__main__":

 sampler = PiSampler(tempo=140)

 sampler.add(Sample(05, 'kick01.wav', sampler))

 sampler.add(Sample(06, 'snare01.wav', sampler))

 sampler.add(Sample(13, 'clhat01.wav', sampler))

 sampler.metronome = True

 sampler.run()

Full code listing (Cont.)

10 Main loop continued
This code is at the indentation level after

the “while True:” statement. After dealing with the

recording logic, we need to play any notes that have

been previously recorded. We’ll work out how to do

that later on. After that, we can sleep until the next

quantize change is due. Once this happens, we have to

do logic that deals with the quantize and any related

variables such as the beat or bar if necessary, either

incrementing them or resetting them if necessary.

Step 09

Step 10

Step 14

Step 12

Step 11

loop number to the last_recorded_loop stack. We

increment the loop count after doing this.

MAKE A RASPBERRY PI SAMPLER

ELECTRONICS

120

Prepare to turn your Raspberry Pi into a fully functional
micro oscilloscope, logic analyser and waveform
generator with the BitScope Micro

Transform your Pi into a
micro oscilloscope

The Raspberry Pi has been used in a plethora of

applications in hardware, software and some

quite unbelievable combinations of the two. From

record-breaking space fl ights to automated bartending

devices and much more, there are thousands of Raspberry Pi

projects that, over the last two and a half years, have shown

what a capable little Linux box this is.

The BitScope Micro is certainly no exception and when you

couple it with your Raspberry Pi you have a very powerful,

pocket-sized oscilloscope that also features a whole

host of other functionalities, such as a waveform and clock

generator as well as a spectrum and logic analyser. Best of

all though, the whole setup (including the Raspberry Pi itself)

comes in at well under £150.

Requiring no external power source, the BitScope Micro is

also water resistant and so is perfect for either home or lab

use. It is fully confi gurable and user programmable in Python,

C++ and more, and can even continuously stream data to disk.

01 Grab your BitScope
If you have not already done so, you need to go and

order your shiny new BitScope Micro (directly from BitScope

or from one of their worldwide retailers). If you are serious

about electronics then you need a good oscilloscope, so it

is truly worth every penny! Once it arrives, you should be

greeted with the neatly packaged box pictured above.

Requiring no external power
source, the BitScope Micro is
also water resistant

TRANSFORM YOUR PI INTO A MICRO OSCILLOSCOPE

121

04 Locate the BitScope Software
Now your Raspberry Pi is all up to date you need

to acquire the BitScope DSO (digital storage oscilloscope)

software. This is not yet available as a Raspbian package,

but it is very easy to install anyway using the downloadable

DEB fi le. Visit www.bitscope.com/pi and click on the

Download link at the top.

05 Download the software
The previous step should have brought you to the

BitScope Downloads page. From here you need to download

the top item in the list, BitScope DSO 2.7 (beta), and save it to

the /home/pi directory on your Raspberry Pi so you know where

to fi nd it later. On some browsers the fi le will automatically

download to the /home/pi/Downloads directory.

06 Install the software
Now we have downloaded the package, the easiest

way to install the software is to open an LXTerminal session

and then run the following code…

 sudo dpkg -i bitscope-dso_2.7.EA17H_armhf.deb

…or the equivalent version for newer software. You should see

lines of output as the installation progresses. The BitScope

DSO software then appears in the main menu under Other.

07 Overclock your Raspberry Pi (optional)
The BitScope software will run fine on a Raspberry Pi with

default settings, however it can be a bit slow to respond. Open

an LXTerminal session and type sudo raspi-config. In the menu,

select option 7 Overclock. Click OK on the following screen and on

the next one select Turbo. Click OK and then you should see some

code run. Once this completes press OK and then you are brought

back to the main raspi-config window. Select Finish at the bottom

right, and then select Yes to reboot your Raspberry Pi.

03 Update your Raspberry Pi
As with almost every project you undertake on the

Raspberry Pi, it pays dividends to make sure your operating

system is updated to the latest stable version, as this can save a

lot of hassle further down the line. To do this, open an LXTerminal

session and then type:

 sudo apt-get update

 sudo apt-get upgrade -y

Then wait patiently for the upgrade process to complete.

02 Open up the box
Once you have received your BitScope Micro and

opened up the box for the fi rst time you should fi nd all of the

pictured items inside (if you get any extras, then it is obviously

your lucky day). The main contents are the BitScope Micro

itself (with mini USB cable preattached) and a set of ten

test clip grabbers. There is also a variety of documentation

containing a large amount of product info and guidance.

One of the best
things about the
BitScope Micro
(as well as its
big brother, the
BitScope BS10U)
is that it’s capable
of running on a Pi
and on any Linux,
Windows or Mac
OS X device with
a USB port. The
graphical UI is
identical on each
of these devices so
it’s easy to switch
between them. The
BitScope Micro
should also work
with smartphones
capable of USB on-
the-go connections,
but there is no
software available to
take advantage
of this yet.

Multiple
platform
support

Above The BitScope
Micro comes
complete with
test clip grabbers
and a whole lot of
documentation

08 Overclocking – part two
Overclocking can sometimes cause instability on your

Raspberry Pi or an inability to boot at all. If this happens, you

can press and hold the Shift key on your keyboard once you

reach the above splash screen to boot into recovery mode.

You can then re-do step 7 at a lower overclock setting and

repeat until you fi nd the highest stable setting.

09 Plug in the BitScope
Now that the software has been successfully

installed on your Raspberry Pi, we can get started with the

BitScope. If you are using a Model A or B Raspberry Pi without

a USB hub then I would recommend turning the Raspberry Pi

off before attaching the BitScope or it may crash. The B+

should be fi ne with plug and play.

10 Load the BitScope DSO
Now you can navigate to the BitScope DSO software in

the menu. This should load a splash screen with two options

– POWER and SETUP. Click POWER and then OK on the pop-

up information box. After a minute or less, the BitScope DSO

main screen will load and you should see some lights on the

BitScope start to fl ash.

11 Familiarise yourself with the software
The image on page 33 shows the screen layout of the

BitScope DSO software. It is fairly intuitive, and is similar to

other physical or virtual oscilloscopes. The largest part is the

main display window. To the top-left is the trigger window (this

changes to wave control if selected). Under the main window you

have the analog input channels and various trim adjustments.

Above We’re using the BitScope Micro BS05
in this tutorial – the same model that you can

win in the competition

12 Familiarise yourself with pinout
The image above shows the BitScope Micro pinout

diagram. There are a total of ten pins with two of them being

ground pins (GND). The remaining eight pins can be confi gured

as logic pins and four of them also have different functions –

L4 is also a waveform generator (AWG), L5 is a clock generator,

(CLK) and L7 and L6 relate to CHA and CHB respectively.

Overclocking can
sometimes
cause instabilityOne of the best

things about the
BitScope Micro
is that it runs on
exactly the same
software as the
more capable
hardware in the
range. This means
if at some point in
the future you feel
the BitScope Micro
is not enough for
your needs, you can
quickly and easily
upgrade to better
hardware with no
hassle, and no need
to learn any new
software!

Hardware
upgrades

122

ELECTRONICS

16 Programming your BitScope
The BitScope DSO and other available software (BitScope

Logic and BitScope Chart) are very powerful applications for a lot

of experimentation. However, in some more complex monitoring

environments they may not offer enough fl exibility. The good

news is that you can program the BitScope in C/C++, Python or

Pascal using their programming API.

17 Further experiments to try
This tutorial has shown only a small fraction of what the

BitScope Micro is capable of. As seen in the above image it can

also be used as a spectrum analyser along with a whole host of

other functionality. Perhaps for your next experiment you could

measure the resistance of your body by comparing the voltage

drop across your body with that of a known resistor. Or you could

try probing your l2C or SPI connections to see how they work. If you

ever run out of ideas, then why not visit the BitScope website and

start experimenting further!

14 Use different waveforms
The BitScope can generate its own waveforms. Connect

a female-to-female jumper cable between CHA and L4 (AWG).

On the right-hand side of the DSO interface, select Wave and

then a wave should appear in the main screen. Change the x

axis to 100us/Div and the y axis to 500mV/Div. Right-click on

the yellow OFFSET button and select MEDIAN. The wave should

now fi ll the main window as in the above screenshot. You can

adjust various parameters of the waveform in the wave control

panel top-left and can also change to step (square) or ramp

(saw-tooth) waves instead of tone (sinusoidal).

15 Experimenting with your body
Another interesting (but fairly simple) thing to try is

measuring electrical signals from your body. Set the vertical

axis to 1V/Div and horizontal to 20ms/Div. Then plug in one of the

probes to CHA, pull back the grabber end and touch it with your

fi nger. You should then see a sine wave on the screen. Bizarrely,

this wave is actually radio waves emitted by your mains electrical

Above The
experiment uses
your body as an
antenna to pick up
radio emissions from
your house

13 Perform a sample experiment
The easiest way to test whether or not your BitScope is

working correctly is to connect one of the test clip grabbers to

the analog input CHA on the BitScope. Connect the other end

to physical pin two on your Raspberry Pi and adjust the scale of

the y axis to 2V/div. You should then see an output in the main

window of around fi ve volts.

wiring which are then being picked up by your body (which is

acting as an antenna). This is why the wavelength of the signal

you see is approximately 50 to 60 Hz.

We looked at a signal
from your body
caused by radio
emissions from the
mains power supply
in your home. In
Europe the mains
frequency is 50 Hz
and typically with
a voltage of 230 or
thereabouts. In USA
and some parts
of Asia, the mains
frequency is 60 Hz
with a typical voltage
of 110. Most modern
electrical equipment
is therefore capable
of operating at either
voltage or frequency.

Mains
electrical
frequency

123

TRANSFORM YOUR PI INTO A MICRO OSCILLOSCOPE

Left For the next version, Dan may add a palm
button for a hierarchical menu structure to
navigate the functions on each fi nger-button

Below Now he’s done the social media (see
issue 148) and the home help modules, Dan
will make a start on the fi tness module

Components list
 Raspberry Pi Model A+

 Raspberry Pi camera module

 5 Short cables

 5 Popper buttons

 USB mobile phone battery

 USB Wi-Fi dongle

 Energenie add-on board

 Golf glove

Raspberry Pi Using the Model
A+, the Ras Pi could be mounted on
the back of the glove. The old CAT5
cables were replaced with fewer wires

Camera module This has been
embedded into the fabric on the back
of the glove, so photos can be taken by
raising a hand and touching a button

Popper buttons Beneath
the fingers are small metal discs that
can be activated just by a touch. Each
button has been given a new function

Power pack As well as the Model
A+, the USB charger used to power
the Pi can be mounted on the glove by
sliding it inside on the palm side

ELECTRONICS

124

The camera takes a picture of a
sign. OCR recognises and stores
the text, which is read back to you

How I made:
Pi Glove 2
Check out Dan Aldred’s new home help module

What physical modifications have you

made since we last spoke?

The glove is more portable – previously,

the Raspberry Pi was in the wearer’s

pocket and you had the long CAT5 cables

attached the glove. This has all been

stripped back and several steps enabled

this. Firstly, was the use of fabric clothes

poppers to replace the tactile switches.

These are metal and when one makes

contact with a ground popper on the

thumb, it creates the circuit. It has meant

that the same functionality is achieved

with five wires as opposed to the previous

ten wires. Secondly, I have moved from

a B+ model to the A+ model, which has

meant that the Raspberry Pi is now

small enough to be mounted on to the

glove itself. Now the wires only need to

run from the fingertip to the wrist. The

camera module is also embedded within

the glove. The lens is exposed through the

glove but the rest of the camera is now

housed within the fabric of the glove. You

have to be a little bit more careful when

you take the glove off, but the overall

pay-off is that the glove is now lighter

and more compact. The power comes

from a small USB mobile phone charger

which gives about six hours running time,

depending on how much you use it for.

What new functions does the rebuilt

glove have?

It was always the plan to develop the Pi

Glove with ‘modules’ for various uses,

starting with home assistance. Imagine

if you did or maybe do struggle with a

disability and you wake up in the night

– the Pi Glove now enables you to check

the time, which is read out, and a light

can be turned on with a simple finger

movement. If required, an emergency

text can be sent to a carer, family

member or the provider of other medical

assistance. The fourth button enables

the Pi camera, which takes a picture of

a sign, for example. OCR is then used to

recognise and store the text, which is

then read back to you.

I decided to add the Pi camera around

the back of the hand area – this linked

in well, enabling a more mobile use of

the camera; it can now be positioned

in a direction that the user wants, is

more accessible and you could even

take a selfie! The main reason for this

change was to enable ‘on the fly’ optical

character recognition. I installed a

Python OCR library and, combining

this with the image taken from the Pi

camera, the software can identify the

text within the picture. This text is then

fed back to the console and easy-Speak

reads out the text. I tried various file

formats – JPG seemed to work well.

Also, changing the picture to black and

white to pick up detail and differentiate

between the text, had improved results.

There were issues with it not identifying

text in low light, and also if the text was

the wrong way round or upside down.

Finally, changing the saturation and

increasing the sharpness produced

usable results.

The emergency text on the second

button makes use of Twilio, the web-

based communication API, which

enables the user to send a pre-written

message requesting assistance. This

could be adopted by others, such as

the police or fire brigade, for use in

dangerous situations. The current time

is also added to the text.

To turn the lights on I used an add-on

board by Energenie. Once installed you

can use it to control up to four simple

Energenie radio-controlled sockets

independently, using a small program.

The add-on board connects directly to

the GPIO, which can be controlled as

either input or output lines under your

software control. A Python library is also

available to program the sockets. I simply

mapped the ‘on’ state to the click of the

button and it turned the light on – from

your fingertips!

Are you currently developing any new

modules for the future?

The current module I am working on is

fitness-related and will allow the wearer

to take their heart rate, change their

music and upload the details of a run

to their chosen social media site. This

will be on the fly with no need to stop

running or whatever sporting activity

you are doing. Just touch the buttons

and your workout music changes, or your

heart rate is read and then converted to

a string and read back to you through

your headphones. I find that current

apps on phones and watches disrupt

your workout – I don’t want to have

to stop running to check my pulse or

change the music.

I was looking at the idea of linking the

glove functionally to a smartphone but

this, I feel, would be moving away from

the original aim, which was to remove

the cumbersomeness of the phone –

having to unlock it, load an app, wait for

the camera to prepare itself. The glove

enables you to click and go.

What would you like to do for the third

iteration of Project New York?

I was introduced to the Micro Python

Pyboard (micropython.org/live), which

has a range of features built in and is

smaller, making it more suitable as a

wearable component. The Micro Python

board is a small electronic circuit board

that runs Micro Python on the bare

metal, and gives you a low-level Python

operating system that can be used to

take control of all kinds of different

electronic projects.

The battery size is also an area that

could be reduced – I am looking into this.

The smaller that all these components

are, the more natural the glove will feel

when it’s being worn.

Dan Aldred is
a curriculum leader
for Computing and IT
at a comprehensive
school and the
lead co-ordinator
for Computing
At School. As
a Raspberry Pi
Certified Educator,
Dan promotes the
use of the Pi in
education and as a
tool for learning.

Like it?
To learn more about
the redesigned
Raspberry Pi Glove
and the current
home help module,
check out Dan’s
YouTube video (bit.
ly/1HVQTYA) and
the project write-up
(bit.ly/19xgQyC).

Further
reading
If you’re interested
in setting up
optical character
recognition for your
own sign-reading
Python projects,
check out Dan’s
guide over at
TeCoEd (Teaching
Computing
Education):
tecoed.co.uk/
python-ocr.html.

HOW I MADE: PI GLOVE 2

125

ELECTRONICS

Create a piece of wearable tech with power moves assigned to
each button to enhance your Minecraft game

Assemble a Minecraft
power move glove

Many of you will be avid fans of the game Minecraft. In

schools it is fast becoming a motivational teaching and

learning tool, useful in areas such as programming, creating

logic gates and setting up a network.

This project is framed around creating a simple networked

Minecraft game where one player chases the other and

tries to hit the block they are standing on. The real hack is

programming a ‘power glove’ that enables you to assign power

moves to each button. These powers can then be deployed

and used to slow down the other player and get yourself out

of sticky situations – check out the video at bit.ly/1CQSmHS!

The real beauty of this hack is that you can then create and

customise your own power moves. The possibilities are

endless, limited only by your imagination. If you’re confi dent

with GPIO pins and setting up buttons, jump straight to Step 8.

01 Update the Raspberry Pi
This project is designed for the Raspberry Pi 2 which

requires the updated operating system, although it is compatible

with the Raspberry Pi B+ too. First ensure that the software is up

to date – open the LX Terminal type:

 sudo apt-get update

 sudo apt-get dist-upgrade

 sudo apt-get install raspberrypi-ui-mods

02 Connect a button to the Raspberry Pi
Take one of the buttons and connect a wire to each

contact, then take the other two ends and connect to the Pi. You

may fi nd this easier using a female-to-female connector. To set

up a test button, use GPIO pin 17 – this is physical pin number 11

on the board. The other wire connects to a ground pin, shown by a

minus sign (the pin above GPIO pin 17 is a ground pin).

What you’ll need
 Raspberry Pi 2

 4 x 6mm tactile buttons

 Female-to-female jerky

 Terminal blocks

 A glove

 Router

 2x CAT5 cables

126

ASSEMBLE A MINECRAFT POWER MOVE GLOVE

127

05 Open Minecraft

The updated version of the Raspbian OS comes with

Minecraft pre-installed, it can be found under Menu>Games

– so load it up. If you have used the Minecraft: Pi Edition before

you will be aware that it runs better in a smaller-sized window,

so don’t make it full screen. You may prefer to adjust and arrange

each window side-by-side to enable you to view both the Python

code and the Minecraft game at the same time.

03 Test that the button works

Use this test code to ensure the button is functioning

correctly. Once it is, the same setup method can be used

throughout this project. To ensure the buttons are responsive,

use the pull-up resistor with the code GPIO.PUD_UP – this will

ensure that multiple touches aren’t registered on each button.

Using Python 2.8, type in the code below, then save and run. If

working correctly, it will return the message ‘Button works’.

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

GPIO.cleanup()

GPIO.setup(17, GPIO.IN, GPIO.PUD_UP)

while True:

 if GPIO.input(17) == 0:

 print “Button works”

04 Create a power move

Now to create your fi rst power move. The glove and code

are structured in such a way that once the basic code template is

set up, you can create your own power moves and assign them to

each button, keeping both your ideas and your gameplay fresh.

The fi rst power move you will program enables you to place a wall

of TNT between you and the player trying to catch you. They have

a choice to go around the wall or blow it up, but it will slow them

down. In a new Python window, type the code below and save the

program into the home folder:

import time

def Firewall():

 mc.postToChat(“Firewall Placed”)

 TNT = 46,1

 x, y, z = mc.player.getPos()

 mc.setBlocks(x-6, y, z+2, x+6, y+10, z+3, TNT)

 time.sleep(10)

while True:

 Firewall()

import time

from mcpi import minecraft

mc = minecraft.Minecraft.create(“192.168.1.211”)

#Replace with the other players IP address

import RPi.GPIO as GPIO

#Set up the GPIO Pins

GPIO.setmode(GPIO.BCM)

#Sets the pin to high

GPIO.cleanup()

GPIO.setup(17, GPIO.IN, GPIO.PUD_UP)

#11 on the BOARD GREEN Firewall

GPIO.setup(18, GPIO.IN, GPIO.PUD_UP)

#12 on the BOARD BROWN Lava

GPIO.setup(9, GPIO.IN, GPIO.PUD_UP)

#21 on the BOARD BLUE Mega Jump

GPIO.setup(4, GPIO.IN, GPIO.PUD_UP)

#7 on the BOARD ORANGE Puddle

GPIO.setwarnings(False) #switch off other ports

#Builds a wall of TNT which if the player hits will explode

def Firewall():

 mc.postToChat(“Firewall Placed”)

 TNT = 46,1

 x, y, z = mc.player.getPos()

 mc.setBlocks(x-6, y, z+2, x+6, y+10, z+3, TNT)

 time.sleep(1)

#Lays Lava to slow down the other player

def Lay_Lava():

 Lava = 10

 check = 1

 mc.postToChat(“Lava Deployed”)

 while check == 1:

 time.sleep(0.2)

 x, y, z = mc.player.getPos()

 mc.setBlock(x-1, y, z, Lava)

 check = 0

#Peforms a Mega Jump to lose players

def Mega_Jump():

 time.sleep(0.1)

 mc.postToChat(“Mega-Jump”)

 x, y, z = mc.player.getPos()

 mc.player.setPos(x, y+15, z)

 time.sleep(1)

#Creates a Puddle to slow down your player

def Mega_Water_Puddle():

 mc.postToChat(“Mega Water Puddle”)

 time.sleep(0.2)

 WATER = 9

 x, y, z = mc.player.getPos()

 mc.setBlocks(x-5, y, z-4, x-1, y, z+4, WATER)

 time.sleep(1)

PiGlovePowerMoves.py

GPIO pins are a
physical interface
between the Pi and
the outside world.
At the simplest
level, you can
think of them as
switches that you
can turn on or off
(input) or that the
Pi can turn on or off
(output). The GPIO.
BCM option means
that you are referring
to the pins by the
“Broadcom SOC
channel” number.
GPIO.BOARD
specifi es that you
are referring to the
pins by the number
of the pin and the
plug – the numbers
printed on the board.

GPIO pins

128

Most home
networks will use
IP addresses that
start with 192.168.1
and then a number
up to 255. An old
router will assign
these IP addresses
automatically. If
the router has Wi-Fi
then players can
also connect to
multiplayer using a
USB Wi-Fi dongle;
you are setting up
a LAN (Local Area
Network).

IP address

Below If you want to
get fancy, try using
the popper buttons
that Dan added to
his Pi Glove 2 project

07 Assign the power move to the button
Now you have a working button and a power move, you

can combine these two together. Basically, when you press the

button the power move will deploy. Once this is working you can

then set up the other three buttons with the same method. Open

a new Python window and type in the code below – save the fi le

in the home folder. Start a Minecraft game as shown in Step 6

and then run the new program. Every time you press the button

you will place a TNT fi rewall.

import time

from mcpi import minecraft

mc = minecraft.Minecraft.create()

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setup(17, GPIO.IN, GPIO.PUD_UP)

#11 on the BOARD

def Firewall():

 mc.postToChat(“Firewall Placed”)

 TNT = 46,1

 x, y, z = mc.player.getPos()

 mc.setBlocks(x-6, y, z-2, x+6, y+10, z-1, TNT)

while True:

 if GPIO.input(17) == 0:

 Firewall()

10 Connect the wires
Now you are ready to connect the wires to the Raspberry

Pi to enable all four power moves to be used. Take one end of

each wire and connect them to the respective pins, as shown

below. The other end of the wire is placed into a ground pin. Note

that the RPi.GPIO pin numbering system is used here rather

than the physical pin number on the board – for example, GPIO

pin 17 is physical pin number 11. The following pins are used:

GPIO 17, pin 11 on the board

GPIO 18, pin 12 on the board

GPIO 9, pin 21 on the board

GPIO 4, pin 7 on the board

11 Set the network up
To interact with other players in the Minecraft world you will

need to set up a networked multiplayer game. This is simple and

can be achieved using an old router. Connect each Raspberry Pi

via an ethernet cable to the router and then back to the ethernet

port on each Raspberry Pi. Turn on the router and wait about

30 seconds for the IP addresses to be assigned. Now load up

Minecraft and one of the players will start a new game.

12 Run the game!
After the game has loaded, the other connected player

will see an option to “connect to a multiplayer game”, usually

called Steve. The player selects this option and the networked

game will begin. You will be able to see two ‘Steves’ and the

Minecraft chat will inform you that ‘Steve has joined the game’.

Open Python and the glove code, press F5 to run and you will be

able to see the power moves being deployed.

13 Interact in another player’s world
You’ll notice under the current setup that if the Pi Glove

is connected to the game and you use one of your power moves,

it will only appear in your Minecraft world and not in the other

players. This isn’t great, as the power move is supposed to stop

the other player! To resolve this, fi nd the IP address of the other

06 Engage the fi rewall
Start a new Minecraft game, then go to the Python

program and press F5 to run it. You may need to press the

Tab key to release the mouse from the Minecraft window. The

program will place a 12 x 10 wall of TNT behind the player every

ten seconds – you can blow them up but the Pi might lag.

09 Create the glove
Take your glove and attach the four

buttons to the fingers on the glove. There are a

number of ways to do this: glue the button

on, sew them in, stick them with double-

sided tape – the choice is up to

you. Wires can be hidden or on

display, depending on your

preferences and how you

want the glove to look.

08 Set up further buttons
Once you have one button working the next step is

to set up the other three using the same method from Step 2.

Take the button and connect the two wires to either side. At this

point you can add all three buttons and test them individually

for connectivity. Connect each set of button wires to the GPIO 17

and run the fi rewall program. If the fi rewall power move builds

on each click of the button, the connections and buttons are

working and you’re ready to attach the buttons to the glove.

ELECTRONICS

129

14 Find your IP addresses
To find the IP address of a Raspberry Pi, load the LX

terminal, type ipconfig and press Enter – the address will

be displayed on the line that begins int addr:. This is the

number that you enter into the mc = minecraft.Minecraft.

create(“192.168.2.234”). Remember on the Glove Raspberry Pi to

enter the IP address of the other player’s Raspberry Pi, not yours.

15 Run both programs
No game would be complete without some healthy

competition and strategy. A second program is deployed by the

other player on the network which tracks and registers if they

catch or hit you. The program checks the block that they have hit

and compares it to the player’s location.

16 Test for hits
To check if the other player has hit you, run the second

program on the Raspberry Pi of the player who is doing the

chasing. The program basically fi nds the other ‘glove’ players

current position and stores it in a variable. It then compares

the position that you hit with your sword, recording and storing

this too. The program then compares the values, if they match

then you have hit the other player and have won the game. If

not, get ready for a tirade of power moves. Note that in order to

monitor where the other player is, you must set the code line

mc1 = minecraft.Minecraft.create() to the IP address of the

Glove Raspberry Pi; for example, mc1 = minecraft.Minecraft.

create(“192.168.1.251”).

17 Game on
Now you are ready to play, check again that the IP

addresses are set for the other Raspberry Pi and not your

own. Build a new Minecraft world and start a new game on the

Raspberry Pi with the player who is chasing. When loaded, the

glove player joins the multiplayer game – this will be called Steve

(see Step 11). When loaded, you should see both players in the

world. Then run the ‘Pi Glove power moves’ program, and on the

other Pi run the ‘You hit me program’. Don’t forget to set the IP

addresses to each other Raspberry Pi.

Once set up, you can modify the power moves, use different

blocks and add new moves. You could create a timer and a

scoring system to track which player can survive the longest. If

you are feeling adventurous, you may want to make another

Power Glove, one for each player.

The program compares the values,
if they match then you have hit
the other player and have won the
game. If not, then get ready for a
tirade of power moves

#Main code to run

try:

 lava_check = 0

 mc.postToChat(“Minecraft Power Glove Enabled”)

 while True:

 if GPIO.input(17) == 0:

 Firewall()

 if GPIO.input(18) == 0: #needs to stop

 Lay_Lava()

 #GPIO.output(18, GPIO.LOW)

 if GPIO.input(9) == 0:

 Mega_Jump()

 if GPIO.input(4) == 0:

 Mega_Water_Puddle()

except:

 print “Error”

import time

from mcpi import minecraft

mc1 = minecraft.Minecraft.create(“192.168.1.245”)

#The other players IP address goes here

mc = minecraft.Minecraft.create()

mc.postToChat(“###Here I come”)

Hit = 1

while Hit == 1:

#Find the block stood on

 stood_x, stood_y, stood_z = mc1.player.getTilePos()

 time.sleep(3)

 blockHits = mc.events.pollBlockHits()

 if blockHits:

 for blockHit in blockHits:

 if stood_z == blockHit.pos.z and stood_y == blockHit.pos.y+1:

 mc.postToChat(“I got you”)

 time.sleep(2)

 mc.postToChat(“###GAME OVER###”)

 time.sleep(1)

 Hit = 0

 mc.postToChat(“###Restart Hit Code”)

PiGlovePowerMoves.py (Cont.)

YouWereHit.py

Raspberry Pi, then enter this IP address into this line of code: mc

= minecraft.Minecraft.create(). For example, mc=minecraft.

Minecraft.create(“192.168.2.234”), fi lling the empty brackets

with the IP address of the other Raspberry Pi within your game.

Remember that this is the IP address of the other player’s

Raspberry Pi and not your IP address.

ASSEMBLE A MINECRAFT POWER MOVE GLOVE

LED matrix display systems fi nd use everywhere from gaudy kebab
shops to impressive steampunk-styled systems

Build a complex LED matrix

Driving LEDs in an effi cient fashion is a science of its own.

The common availability of single-board computers has put

the necessary technology within reach of everyone.

When dealing with LED displays, two different systems

must be considered. We will focus on traditional matrix-

based systems made up of one or more LEDs. Their

affordable nature makes them ideally suited to classic display

applications: they communicate currency prices, provide

stock-brokers with updates from the trading fl oor and have

even been used as basic displays for primitive oscilloscopes.

Finally, we will also provide you with an overview of

electronic basics. This tutorial is a bit more advanced than the

ones we’ve featured up until now, and it’s also worth noting

that we’re going to be programming with C rather than Python.

Follow along using the code listing annos.

01 Think about LEDs
Standalone LEDs are primitive – they light up once

current fl ows through them. Driving a few LEDs is as easy as

connecting them to GPIO pins along with a resistor. Sadly, this

method becomes wasteful once more than a few of them get

involved – driving 16 diodes ties up 16 pins.

02 Arrange your diodes
Methods were devised to reduce the number of pins

needed. Matrix-based systems are resilient to individual

diode failures, and provide a pin-to-LED ratio of n=(n/2)̂ 2. The

following steps assume a 16x16 LED matrix which is made

up according to Figure A. Since LEDs permit current in only

one direction, you can enable a single LED by bringing the

corresponding pins high and low.

What you’ll need
 Breadboard & wires

 16x16 LED Matrix

 2x 74HC238

 2x 74HC244

 16x 220 Ohm Resistor

ELECTRONICS

130

04 Separate concerns
Chip two goes by the name of 74HC244, which is

described as an octal buffer with tri-state capability. Tri-State

outputs can physically disconnect themselves from the bus

line. This permits you to tie their outputs together without

fear of short circuits. As long as all but one chip are in tri-state

mode, no current can fl ow between high and low output pins.

03 Harness the MUX
Our LED module has a total of 32 inputs, which

overwhelms older versions of the RPi. The first way to restrict

their number comes in the shape of the 74HC238, a component

described as a 3-to-8 line decoder/demultiplexer. Its function is

described in the Figure B image on the next page.

Above The extended version of this schematic is inside FileSilo.co.uk
– just sign in and head to the issue #151 page

Our LED model has
a total of 32 inputs,
which overwhelms
older versions

05 Round them up
Four GPIO pins control the currently-enabled ‘line’

of the display. Three pins confi gure the address which is to

be emitted, while the signal emitted from the fourth pin is

connected to the activity inputs. This ensures that but one IC

is active. The 74HC244 ensures that but one of the two groups

is active at any given time.

06 Confi gure the pins
We used a library from Hussam Al-Hertani’s

Hertaville blog (hertaville.com/2014/07/07/rpimmapgpio).

The fi rst step involves setting output functions. As the GPIOs

are set to outputs, the tri-state feature might connect the

internal state to the output pins of the IC. This could lead to

internal shorting if the output is not turned off.

#include ���mmapGpio.h�

#include <unistd.h>

#include <stdio.h>

void (unsigned _which, mmapGpio*

{

 if(_which&

 {

->

 }

 else

 {

->

 }

 if(_which&

 {

->

 }

 else

 {

->

 }

 if(_which&

 {

->

 }

 else

 {

->

 }

 if(_which&

 {

->

 }

 else

 {

->

 }

}

void (unsigned _which, mmapGpio*

{

->

->

 if(_which==

 {

->

 }

 else

 {

Full code listing

Step 07

Step 12

Step 08

Figure A

BUILD A COMPLEX LED MATRIX

131

132

08 Select a row

In the 74HC244, we first disable both units and

proceed to turning on the one which is needed. This sequence

prevents ghosting during the switching process.

09 Do the main loop

The outer part of the loop consists of logic that

manages the addressing of the individual rows. Our program

must flash the individual LED groups one after another using

the building blocks described in the next step.

10 Complete the loop

Writing out data is accomplished in a sequence of three

commands. We select the row, configure the column and then

write out the data bits that are to be displayed. A small pause

is observed in order to give the LEDs some time to ‘burn into’

the viewer’s eyes.

 _where->writePinLow(PINCS1);

 }

}

void setData(unsigned char _which, mmapGpio* _where)

{

 if(_which&1)

 {

 _where->writePinHigh(PIND0);

 }

 else

 {

 _where->writePinLow(PIND0);

 }

 if(_which&2)

 {

 _where->writePinHigh(PIND1);

 }

 else

 {

 _where->writePinLow(PIND1);

 }

 if(_which&4)

 {

 _where->writePinHigh(PIND2);

 }

 else

 {

 _where->writePinLow(PIND2);

 }

 if(_which&8)

 {

 _where->writePinHigh(PIND3);

 }

 else

 {

 _where->writePinLow(PIND3);

 }

 if(_which&16)

 {

 _where->writePinHigh(PIND4);

 }

 else

 {

 _where->writePinLow(PIND4);

 }

 if(_which&32)

 {

 _where->writePinHigh(PIND5);

 }

 else

 {

 _where->writePinLow(PIND5);

 }

 if(_which&64)

 {

 _where->writePinHigh(PIND6);

 }

 else

 {

 _where->writePinLow(PIND6);

 }

 if(_which&128)

 {

 _where->writePinHigh(PIND7);

 }

 else

Full code listing

07 Power the MUX

Create a convenience function taking an address

ranging from zero to 15. It is converted into pin outputs for our

3-to-8-demultiplexer. The effect of this is that all but one of

the sixteen rows is to be supplied with energy.

Step 08

Step 11

Figure B

Above Digital LED matrices like this one give you far more control over
each individual ‘pixel’ in the display

Two versions of LED
strips are offered.
‘Primitive’ ones are
based on analogue
technology. In it, an
entire strip of diodes
has the colour set
by the three input
pins. Systems such
as the mega-display
shown in the left-
hand image require
the use of the
digital version. They
are based on the
concept of the shift
register. Your system
inputs individual
colour values which
are then pushed on
along the strip.

LED
stripes

ELECTRONICS

133

11 Energy control
LEDs light up if current fl ows through them. SetData pulls

the pins of the 74HC244 low to ensure that the energy supplied

from the 74HC238 can fl ow through the diode.

12 Avoid GPIO trouble
The Raspberry Pi Foundation has a tendency to change

the layout of the expansion header regularly, a habit which

professional manufacturers of process computers abhor.

It’s recommended to handle the mapping between pins and

functions via a set of defi nes. Our code is optimised for a

Rev2 Raspberry Pi with a ‘short’ header – 40-pin variants will

require readjustments making sure the physical pin numbers

correspond to the logical GPIO numbers.

13 Add example data
Test the code by setting the datastore to a value of your

choice. Setting 64 to all fi elds will disable one row in each part

of the display.

14 Kick it off
Check all connections between the planar and the

single-board computer, and proceed to starting the compiled

app. Don’t forget to use the sudo command – direct memory

access is restricted to root in order to prevent apps from

causing havoc in the physical memory. Users are accustomed

to this, so requiring them to put a sudo in front of the

command doesn’t cause concern.

15 Notice a fl icker
Sharp-eyed readers will notice an occasional fl icker

where one line appears brighter than the others. This is

caused by the stalling of the program – if the kernel does

other work, the switching routine can’t run. We could solve

this problem by using a real-time Linux kernel.

 {

 _where->writePinLow(PIND7);

 }

}

int main(void)

{

 mmapGpio rpiGpio;

 //Set outputs

 rpiGpio.setPinDir(PINA0,mmapGpio::OUTPUT);

 rpiGpio.setPinDir(PINA1,mmapGpio::OUTPUT);

 rpiGpio.setPinDir(PINA2,mmapGpio::OUTPUT);

 rpiGpio.setPinDir(PINA3,mmapGpio::OUTPUT);

 //TURN OFF ASAP!

 rpiGpio.setPinDir(PINCS0,mmapGpio::OUTPUT);

 rpiGpio.writePinHigh(PINCS0);

 //TURN OFF ASAP!

 rpiGpio.setPinDir(PINCS1,mmapGpio::OUTPUT);

 rpiGpio.writePinHigh(PINCS1);

 rpiGpio.setPinDir(PIND0,mmapGpio::OUTPUT);

 rpiGpio.setPinDir(PIND1,mmapGpio::OUTPUT);

 rpiGpio.setPinDir(PIND2,mmapGpio::OUTPUT);

 rpiGpio.setPinDir(PIND3,mmapGpio::OUTPUT);

 rpiGpio.setPinDir(PIND4,mmapGpio::OUTPUT);

 rpiGpio.setPinDir(PIND5,mmapGpio::OUTPUT);

 rpiGpio.setPinDir(PIND6,mmapGpio::OUTPUT);

 rpiGpio.setPinDir(PIND7,mmapGpio::OUTPUT);

unsigned char dataStore[2][16];

for(int j=0;j<2;j++)

{

for(int k=0;k<16;k++)

{

 dataStore[j][k]=64;

}

}

 int blockCounter=0;

 int rowCounter=0;

 while(1)

 {

 blockCounter++;

 if(blockCounter==16)

 {

 if(rowCounter==0)

 {

 blockCounter=0;

 rowCounter=1;

 }

 else

 {

 blockCounter=0;

 rowCounter=0;

 }

 }

 safelySetRow(rowCounter, &rpiGpio);

 setAddress(blockCounter, &rpiGpio);

 setData(dataStore[rowCounter][blockCounter], &rpiGpio);

 usleep(50);

 }

 return 0;

}

Full code listing

Step 06

Step 09

Step 13

Step 10

Above This is the full schematic of the LED matrix that we’re working
with here (you can also view it at its full size on FileSIlo)

BUILD A COMPLEX LED MATRIX

ELECTRONICS

Hover is an impressive add-on board for your Raspberry Pi that
allows you to easily add touch and gesture control to any project

Add gesture control to
your Raspberry Pi

People often ask what the best way is for them to

get started with Raspberry Pi. Obviously this does

depend on the individual user and what they want

to achieve and get out of any project, but in a more

general sense it’s often the hardware projects

that win out for getting to grips with it. They teach

a variety of skills (including programming, circuit

building, soldering, hardware design and much

more) and are also varied enough to both keep

beginners interested and allow them to work out

for themselves exactly what aspect they love

best. Even a seasoned professional will get a

serious kick out of a bit of physical computing and

automation! This is one of the unique features of the

Pi compared to traditional “black box” computers;

you can break out of the usual boundaries and

interface with everyday objects like never before.

One of the most important aspects of a hardware

project is often the user input mechanism, and

as technology is refi ned we see new and more

intuitive ways to accomplish this task. Gesture

and touch control is now present in a large

number of consumer devices and even the biggest

technophobes are starting to embrace the ease of

this technology. It is time to bring your Raspberry Pi

projects into the 21st century with Hover!

What you’ll need
 Raspberry Pi

 Hover

 Breadboard

 Male to female

 jumper cables

 Speaker or headphones

134

ADD GESTURE CONTROL TO YOUR RASPBERRY PI

135

01 Get the gear!
The Hover add on board is available to purchase direct

from Hover (http://www.hoverlabs.co/#shop) for $39 (£25),

however this will ship from Northern America and therefore if you

are based in the UK or Europe it will likely be quicker and cheaper

to order from one of the other retailers listed via the above link.

The added benefi t of ordering from a retailer is that if you need

any of the other items you can likely get those at the same time!

Hover will work perfectly with any Raspberry Pi, including both

the new plus versions and the older models – just make sure

your system is fully up to date with:

 sudo apt-get update

 sudo apt-get upgrade

04 Check the connection
Hover connects to the Raspberry Pi through the

I2C interface located on the main 26 or 40 pin GPIO bank

(depending on which version of the Raspberry Pi you are

using). There is a very easy way to check if your Raspberry Pi is

correctly connected to Hover using the simple command line

I2C tools. Issue the following command:

 sudo i2cdetect -y 1

If you see 42 in the response then you are successfully

connected to Hover!

03 Set up the hardware
Make sure your Raspberry Pi is powered down and

not connected to power before starting this step, to avoid any

unnecessary damage to your Raspberry Pi. Pick up your Hover,

breadboard and wires and connect the as shown in the Fritzing

diagram. The physical pins you should be using on the Raspberry

Pi are 1, 3, 5, 6, 16 and 18. Whilst a Model B Pi is shown, this will

be the same connection on a Model A, B, A+ or B+ of any revision.

Once completely set up like the image, reconnect the power cord

and open an LXTerminal session.

02 Update GPIO and I2C
When making use of GPIO and I2C (or any other

interfacing technique on the Raspberry Pi) it is always good

practice to update to the very latest software versions possible.

Newer versions typically have bug fi xes and additional futures

which can come in very handy. GPIO and the RPi.GPIO Python

library are installed by default on Raspbian, but you may need to

enable I2C if you haven’t already. This is a fairly standard process

and has been covered many times so we won’t go into it here. We

would, however, highly recommend the brilliant I2C setup tutorial

from Adafruit (https://learn.adafruit.com/adafruits-raspberry-

pi-lesson-4-gpio-setup/confi guring-i2c).

Above You can tap
the Hover or swipe

in four directions
just above it

The physical pins you
should be using on
the Raspberry Pi are
1, 3, 5, 6, 16 and 18

The Hover board
has intelligent on-
board level shifting,
meaning that it can
be used with either
3.3V or 5V logic
levels which means
it can be used with
pretty much any
microcontroller your
heart desires. There
are connection
examples and
code snippets
available for
Arduino, Sparkcore
and PCduino on
the Hover website
(hoverlabs.com) and
these can also be
adapted to suit other
devices fairly easily.

If you decide to
create your own
example with
another device then
why not submit a pull
request to the Hover
GitHub (github.com/
jonco91) if you are
happy to share!

Plenty of
platforms

136

Above This MGC3130
chip works as the 3D
tracking and gesture
controller

07 Run the example file
The current Hover library is simply a Python fi le

with all of the necessary functions included within it, rather

than an installable package (however, this may change in

the future). In order to use the functions contained within

the Hover_library.py script discussed above, it is therefore

necessary to make sure that the Hover_library.py script is

located in the same folder as any script you have written that

makes use of any of the Hover functions. In a terminal session,

navigate to the folder containing the Hover_example.py fi le

and run it using:

 sudo python Hover_example.py

The Hover board will initialise and you will then see a message

“Hover is ready”, meaning you are good to go.

05 Using a Rev 1 Pi?
In the code, we have passed an option “-y 1” which tells

the operating system which I2C bus to look at (there are two on

the BCM2835 processor on the Pi). The fi rst revision Raspberry

Pi (the one that initially launched in February 2012 with 256MB

of RAM) made use of I2C bus 0, whereas all other versions of

the Raspberry Pi since have used I2C bus 1. So the above code

would change to:

 sudo i2cdetect -y 0

And you should expect the same output (42) as in step 7.

Additionally you will need to edit line 27 of the Hover_library.

py fi le, changing bus = smbus.SMBus(1) to bus = smbus.

SMBus(0). A patch that automatically detects the Raspberry

Pi version and makes this change for you has been submitted,

but not yet accepted into the master branch so this may not be

necessary in future versions.

06 Download the sample code
Now you have everything hooked up correctly and

your Raspberry Pi is fully up to date, it is time to get the

Hover Python library, which makes using the board from

Python scripts extremely easy. You can get this using the

following command:

 git clone https://github.com/jonco91/hover_

 raspberrypi.git

This should download a folder called hover_raspberrypi to

your /home/pi directory containing all of the fi les needed for

this article. Alternatively you can download the zip fi le from

https://github.com/jonco91/hover_raspberrypi/archive/

master.zip.

Python is extremely
useful for beginners
due to its easy-to-
understand syntax,
fairly prose-like
formation and the
fl exibility and ease
of acquiring existing
software libraries to
help your projects.
It is also the offi cial
programming
language of the
Raspberry Pi and is
therefore very well
supported within the
community. That is
not to say that Hover
will not work with
other programming
languages; simply
that the creators of
Hover have not yet
released any code
libraries in other
languages.

Why
Python?

ELECTRONICS

137

08 Investigate the output
Once you have completed step 7, if you touch the

Hover board or make gestures above it you will begin to see

output in the terminal which is a bunch of 0s and 1s and then

a description of what it has seen – right swipe, north tap,

etc. The way the Hover works is that it can sense any one of

nine different actions and these are sent to the Raspberry Pi

over I2C as an 8-bit binary value. The first three bits describe

whether it was a touch or gesture event and the remaining five

bits describe the specific type or direction of the event. The

exact breakdown can be seen in the code listing to the right.

09 Enable 3.5mm audio
Grab your speakers and plug them in to the 3.5mm jack

plug on the Raspberry Pi. You will then need to route audio to

the 3.5mm jack using the following command (you can skip this

step if you are using an HDMI display, which has in-built audio):

 sudo amixer cset numid=3 1

10 Make a drum machine
In the hover_raspberrypi folder is another folder called

examples that contains code and sounds to turn Hover into a

drum machine! Navigate to the hover_raspberrypi directory

and then copy the Hover_library.py file into the examples folder

by using:

 cp Hover_library.py examples

You can then move into the examples folder and run the Hover_

drum.py file using:

 cd examples

 sudo python Hover_drum.py

Make some gestures and taps on and around Hover and you

will have your own basic drum machine!

11 Create your own responses
The great thing about having a Python library available is

that it is easy to integrate this device into any of your existing or

future projects. The code shown is all you need to get started

with Hover. You will see that on line 15 and onwards there are

comments saying “code for … goes here”. Essentially all you need

to do is insert the actions you want to occur on the particular

event mentioned in the comment and you will be up and

running… it really is that easy!

12 Other project ideas
Most of you are probably now wracking your brains for

projects you could use Hover in, but let’s face it – pretty much

any project that requires physical interaction would be made

better with touch and gesture control. If you think it is cool but

are lacking inspiration, we recommend looking at the projects

section of the Hover website at http://www.hoverlabs.

co/projects, where there are projects by the creators and

community alike. If you make something cool, be sure to send

us the pictures!

Did you come
here looking for
information on how
to build your space
age transportation
device? We can’t
help you with
that, but we don’t
want to leave you
disappointed!
Hoverboards were
first popularised as
a fictional personal
transportation
method in the 1989
film Back To The
Future Part II and
took the appearance
of a levitating
skateboard with no
wheels. 25 years
later and it seems
we might be getting
close to turning this
dream into a reality.
Hendo Hoverboards
have created a
$10,000 hoverboard
which uses a
principle similar
to that of maglev
trains to generate lift
(kck.st/ZMd9AA),
and more recently
Ryan Craven has
created a much
cheaper alternative
using four leaf
blowers and some
other cheap parts
(mrhoverboard.
com/about).

Where are the
hoverboards?

import time

from Hover_library import Hover

hover = Hover(address=0x42, ts=23, reset=24)

try:

 while True:

 # Check if hover is ready to send gesture

 # or touch events

 if (hover.getStatus() == 0):

 # Read i2c data and print the type of

 # gesture or touch event

 message = hover.getEvent()

 type(message)

 if (message == “01000010”):

 # code for west touch goes here

 elif (message == “01010000”):

 # code for centre touch goes here

 elif (message == “01001000”):

 # code for east touch goes here

 elif (message == “01000001”):

 # code for south touch goes here

 elif (message == “01000100”):

 # code for north touch goes here

 elif (message == “00100010”):

 # code for swipe right goes here

 elif (message == “00100100”):

 # code for swipe left goes here

 elif (message == “00110000”):

 # code for swipe down goes here

 elif (message == “00101000”):

 # code for swipe up goes here

 # Release the ts pin until Hover is

 # ready to send the next event

 hover.setRelease()

 time.sleep(0.0008) #sleep for 1ms

except KeyboardInterrupt:

 print “Exiting...”

 hover.end()

except:

 print “Something has gone wrong...”

 hover.end()

Full code listing

ADD GESTURE CONTROL TO YOUR RASPBERRY PI

Thumbsticks Push forward/
backward to switch between triangles
and reverse sawtooth waves or push
left/right to affect the oscillators

Isomorphic All the chords and
scales you can play have the same
geometric shape, no matter what key
you’re playing them in

Hexagonal grid The Joytone
uses a hexagonal layout for the notes
like electronic musical instruments
such as Rainboard or apps like Musix

Chords You can play chords by
manipulating three thumbsticks at
once – how you move them affects
the sound of the notes in the chord

Above (inset) Getting to know
the musical distances between
adjacent thumbsticks is the key
to learning to play the Joytone

Right There’s a marathon lab
session behind this six-note
demo unit that Sharples and
Glanzman presented at the CIS
Senior Design Fair

Components list
 Raspberry Pi Model B

 Cypress PSoC 4

 Arduino Micro

 57 Xbox 360 thumbsticks

 57 NeoPixel Diffused 8mm

 Through-Hole LEDs (Adafruit)

 8 16-channel analogue multiplexers

 5 16mm Illuminated Pushbuttons

 (Adafruit)

 200mm SoftPot Membrane

 Potentiometer

ELECTRONICS

138

How I made:
Joytone
Reinventing the keyboard with a grid of joysticks

What inspired the Joytone?

David Sharples The Joytone is an

expressive isomorphic musical

instrument which came out of my

frustration trying to learn to play

musical instruments. I was trying to

teach myself piano and was wondering

why there are white and black keys

– it makes things so much harder. I

learned a bit of music theory and came

to realise that a major scale is just a

well-defi ned musical structure; the gaps

between the notes in a major scale are

the same regardless of which major

scale it is. But, because there are white

and black keys on a piano, you can play

a C major scale just by running up all

the white notes. If you want to play a C#

major scale you have to throw in a bunch

of black keys. It’s hard to remember and

you have to build up muscle memory. So

one of the goals with this project is to

build an instrument that doesn’t have

that bias based on the keys – so it’s

isomorphic; that’s what that means.

And you’re using analogue thumbsticks?

David Glanzman They’re Xbox joysticks…

Sharples That’s the second big goal of

the project. When I was researching this,

I noticed there were some instruments

that had these isomorphic keyboards –

a grid of hexagons – but the issue was

that they were just buttons, they didn’t

have the same richness and depth as an

actual musical instrument. When you’re

playing a guitar there are a million ways

to affect the sound – how hard you’re

pushing on the string, how hard you

pluck it, where on the fret you’re holding

it, if you bend the string or not – and you

can get all these rich sonic qualities. So

we wanted to make it isomorphic and

we wanted to make it expressive. We

used these thumbsticks because you get

two channels of analogue control in this

familiar little interface. One axis changes

the waveform of the synthesised sound

from a triangle wave (has a pure, bell-like

quality) to a reverse sawtooth wave (has

a buzzy, bright sound, like a trumpet).

There are two oscillators creating each

note and if you push the thumbstick to

the left, those oscillators are exactly

in tune, making a very soft sound. If

you push it all the way to the right then

they’re offset by a couple of hertz, which

makes a wide, rich sound. Then the

amount that you rotate the joystick gives

the volume. So you have two and a half

dimensions of control there, which adds

some depth to the sound.

What is the role of the Raspberry Pi?

Sharples There’s a two-brain system

going on – we have the Raspberry Pi and

then we have the Cypress PSoC 4. The

Cypress PSoC 4 does all the heavy lifting

with the data reading.

Glanzman It does all the measurements

for the joysticks. It’s got ADCs in it that

convert analogue to digital, and then

basically looks at each axis for each

joystick in sequence, records it, and

then waits for the Raspberry Pi to ask it

for data values for each of the joysticks.

Sharples There’s 57 thumbsticks and

each one has two analogue channels,

so that’s 114 analogue channels total.

So what we did was we had eight

16-channel multiplexers hooked up

to the PSoC and then the PSoC sends

a signal to all of them that says ‘give

me channel one’. Then it reads the

eight channels, and then it says ‘give

me channel two’ and it reads the eight

channel twos. After it does that for all

16 channels it then has this full bank

of current data. The Raspberry Pi

periodically says ‘give me all your most

recent data’, so the PSoC forwards the

data to the Raspberry Pi, which then

does a little bit of processing in Python

and then sends commands to PureData,

which is our synthesiser program.

What’s the Arduino component doing?

Sharples Each thumbstick also has

an RGB LED in its hexagonal cell, and

our intention was to use these to show

which nodes are in key or out of key. We

also wanted to guide the user through a

scale – or even a song, showing the next

note that they’re supposed to play – but

we ran into some technical diffi culties.

The ideal setup for this is that you

daisy-chain all these lights in a big line

and then hook them up to an Arduino

Micro, which is really good at controlling

these specifi c lights from Adafruit, and

then it can just push all of this data down

the line and you should just be able to

put whatever colours you want on each

light individually. But we had some

problems with the signal and could only

get about four lights to behave.

Is it easy to learn to play the Joytone?

Sharples The barrier to entry is much

lower. It’s funny, when we first got it

working, David was playing with it,

wearing headphones, and he sort of

stopped talking and was pushing a few

of the joysticks, like ‘Wait, wait…’, and

then he just played back Bach. So the key

to learning it is just learning a little, tiny

bit about the structures in music theory.

There’s a shape you can hold your fingers

in that will play a major chord; once you

learn that shape, that’s it – that’s how all

of the Joytone’s major chords are played.

Glanzman When it comes to learning

the Joytone, you have to attack musical

instruction differently than you would

with another instrument. When you

learn something like the piano, you

learn that this is D major, this is F#

minor – you learn different things

based on the note, the actual class.

But with the Joytone, the pitch class

is totally irrelevant because we hear

everything in relevant terms, and you

play everything in relative terms. So to

learn the instrument, you don’t even

have to discuss pitch classes – you

just talk about relative distances. So

major thirds or minor thirds, fifths,

fourths – it’s distances between notes

instead of the actual note values.

I think if you phrase musical instruction

in those terms, in terms that we

experience music in rather than the

terms we normally go through to create

music, it becomes a much more natural

interface because it’s built on that type of

instruction, making it simple to learn.

David
Glanzman
is a sophomore
in Computer
Engineering at
the University of
Pennsylvania.
David has worked
on microprocessor
design, audio
electronics, medical
devices and more

Like it?
Interested in
learning more
about isomorphic
instruments?
Check out David
Sharples’ senior
design blog:
davesharpl.es/blog

Further
reading
Here’s the fi nal
demo video of the
Joytone, comprising
David Glanzman’s
virtuoso Bach
performance:
bit.ly/1vfXnIw

David
Sharples
is an interaction
designer and
graduated from
the University of
Pennsylvania’s
Digital Media Design
programme

HOW I MADE: JOYTONE

139

ELECTRONICS

140

How I made:
Connect 4 robot
Think you can outsmart a robot? David
Pride’s 4-Bot will put you to the test

What inspired you to make this?

I took part in Pi Wars, hosted at

Cambridge University last December,

and following this I was approached to

supply some robots to the Raspberry Pi

foundation for their ‘Robot Pod’ as part

of the BETT show in January. My wife

bought me the brilliant MeArm kit and I

used it to build a LEGO block sorter, as you

do. This used the Pi camera module and a

colour recognition script I wrote in Python

to identify the different coloured blocks

and then used the arm to drop them in the

correct ‘buckets’. You can find a video over

at: https://youtu.be/FJ8WV1uLhFA

Based on this I was then looking for

other uses for the colour-capture code

and Connect 4 seemed like a really good

choice. Research soon led me to find that

the game, and the logic behind it is far

from simple! There is good information

online; however, while I found many

versions of Connect 4 for Python, few of

them ran successfully on the Pi.

How long has the development of the

robot taken you? Did you encounter

many problems during its development?

It took approximately two months of

evenings and weekends to complete the

bot. The trickiest part was undoubtedly

capturing the game board accurately every

time. It is extremely light-dependant as

the Python module works by capturing

the RGB value of the 42 spaces on the

board. These values however do change

dramatically depending on the lighting.

I wrote a ‘testcard’ script that can be

run with counters in known locations. This

script then reports back what it thinks

it sees, and the tolerances for the RGB

components can then be adjusted until

the result matches what is actually there

on the real game board. This made the

game more portable as it can be adjusted

to its surroundings each time.

What role does the Raspberry Pi play in

this project?

The Raspberry Pi is integral to the bot; the

game program is written in Python and

is configured to run at boot. The servos

that control the arm and the LCD display

are controlled by the PiXi board designed

by Mark Cantrill at Astro Designs

(@AstroDesignsLtd). The board is a

monster of an add-on board with built-

in FPGA and the ability to control 50+

servos! I was fortunate enough to be given

an early production version and Mark is

currently working on a Raspberry Pi HAT

version, available later this year.

We saw that you used the Minimax

algorithm for this project, how does that

integrate with the robot?

In regards to intelligence the Minimax

algorithm that the game uses is well

known – although it wasn’t known to me

when I started this project! There is a

Python class for this algorithm written by

Erik Ackermann and Charlene Wong that I

adapted and wrote an interface for.

The interface turns the captured

Pi camera image into an array of RGB

values. These values are then converted

in to the matching counters and the result

of this is then saved in an array as the

‘game state.’ This is then passed to the

algorithm, which then returns the ‘best

move’ based on the game state. This

move is then passed to the control logic

for the arm, which picks up a counter and

drops it in the correct slot.

How intelligent is the robot? We’re

assuming you’ve been able to beat it a

few times?

In terms of how well it plays, Connect 4 is

a ‘perfect’ game in mathematical terms.

There is a huge but finite number of

solutions and they can all be calculated

with enough processing power. The trade-

off is in the depth of search and therefore

the time taken to calculate each move.

With a Pi 2 the calculation time is around

5-7 seconds, using a Pi 3 this drops to 2-3

seconds. If you increase the search depth

this massively increases the calculation

time so I selected a middle ground where

the bot plays a pretty mean game but the

total time per move is still acceptable.

With capturing and processing the image,

calculating the next move and delivering

the counter the total time per turn is

around 25 seconds.

I took 4-Bot to the Raspberry Pi Fourth

Birthday party in February where it took

on all comers – including Eben Upton

himself. We had a proper ‘Inventor vs

Invention’ showdown – which ended in

an honourable draw. Over a hundred

games were played by children and adults

alike over the course of the two days.

I suspected that the bot would prove

popular so to limit the time taken for each

game I altered the code so each player

had only ten counters.

Even with this limit, three extremely

smart youngsters managed to beat

it fair and square. Truly impressive –

and congratulations again to James,

Louis and William, who each won a

new Raspberry Pi 3 for their efforts. My

personal tally is roughly 50 per cent lose,

40 per cent draw and 10 per cent win

when playing a full game. I am still yet to

beat it playing with only ten counters!

So what’s next for you?

In terms of what comes next, I am

currently a full time MSc Computer

Science student. I am just finishing the

taught modules, soon to start on my

final project and dissertation. I of course

want to find something Pi-related.

Additionally I was recently sent a very

cool educational robot head called OhBot

(www.ohbotrobot.com) that uses an

Arduino and has software that runs under

Windows and talks to the bot via USB-to-

serial connection. I am currently working

on converting that to run on the Ras Pi.

Like it?
Puzzle-solving Pi
robots are always
well received, and
if you like the look
of David’s Connect
4 robot, go ahead
and check out
this Rubix cube
solving robot from
Maxim Tsoy. It’ll
be a while before it
can beat the world
record, but it isn’t
far off: http://bit.
ly/1SvrIQ6

Further
reading
A large part of the
development of the
Connect 4 robot
stems from the
Minimax algorithm.
It’s fairly complex,
but adaptable to
a wide number of
projects and useful
when mixing motors
and servos with
the Raspberry Pi. A
complete guide to
the algorithm can be
found here: http://
neverstopbuilding.
com/minimax

The trickiest part was capturing
the game board accurately

Components list
 Raspberry Pi board

 Disassembled 3D printer

 Wood

 MeArm claw

 PiXi controller board

 Stepper motor

 LCD message screen

Right Once connected to a Raspberry Pi 3, the 4-Bot
takes around 25 second to program and complete
its move

Below While each decision that 4-Bot makes is
mathematically correct, it can be beaten from time
to time

Second hand claw
The rail from a disassembled 3D
printer helps move the on-board claw
into different positions. It works in
tandem with the Python interface
designed by David, and has been
aligned to make sure counters aren’t
dropped in the wrong columns

Minimax algorithm
Every move that 4-Bot makes is based
around the Minimax algorithm, which
is ideal for keeping calculation times
down to a minimum. Despite each
move being mathematically correct,
there’s room for error and 4-Bot can
be beaten

Python imaging library
A complex imaging library works behind
the scenes to help 4-Bot identify the
colours and location of each game
piece. Based on these calculations, it
can then work with the MeArm claw to
provide the optimal move for that turn

Complete servo control
The primary servos used to control the
various arm movements are powered
by a PiXi board; one of the key benefits
of this board in particular is that it can
support up to 50 individual servos,
allowing for more fluid movements
from 4-Bot

HOW I MADE: CONNECT 4 ROBOT

141

Program a Raspberry
Pi quadcopter

The Raspberry Pi is a fantastic project board. Since we love

a challenge, we set out looking for something to really take

advantage of its capabilities in the most spectacular way

possible, something that would really push the limits of our

hacking and coding skills. We chose a quadcopter.

Kits are available as ready-to-fl y (RTF) if you just want the

joy of fl ight, but where’s the challenge in that? We started

with an almost-ready-to-fl y (ARF) kit – the DJI Flame Wheel

F450 – all the hardware, but none of the control electronics

or software. Many enthusiasts have created DIY quadcopters

using Arduino microcontrollers, so we knew a DIY build was

possible, but very few, if any, have successfully used the

Raspberry Pi.

This article uses the Python code on the disc as a guide

through what’s needed to build a quadcopter, metaphorically

bolting it together so that by the end, you don’t just understand

the code but also the interaction with the real-world to enable

you to build your own quadcopter with confi dence.

As you read the article, you can follow the corresponding

code by searching for an equivalent tag comment; for

example, to fi nd the code related to the ‘# Angles’ section of

the article, simply search the code for ‘# Angles’.

How do you beat a Raspberry Pi robot? You give it wings. Andy
Baker shows us how to code our way into the clouds

ELECTRONICS

142

Interpreter
The command interpreter converts a series of commands

either from a radio control or programmed into the code itself.

The commands combine the direction and speed compared to

the horizon that the user want the quadcopter to follow. The

code converts these commands into a series of targets

for vertical speed, horizontal speed and yaw speed – any

command from a pair of joysticks can be broken down into a set

of these targets.

Inputs
The inputs to the quadcopter come from a series of electronic

sensors providing information about its movement in the

air. The main two are an accelerometer which measures

acceleration force (including gravity) in the three axes of the

quadcopter, and a gyroscope which measures the angular

speed with which the quadcopter is pitching (nose/tail up

and down), rolling (left/right side up and down), and yawing

(spinning clockwise and anticlockwise around the central axis

of the quadcopter itself).

Axes
The accelerometer is relative to the orientation of quadcopter

axes, but the command targets are relative to the Earth’s

axes – the horizon and gravity. To convert the sensor output

between the quadcopter axes and the Earth axes needs a little

trigonometry

Although this article focuses on software, a very basic

background in the hardware from the kit is necessary to

provide context.

A quadcopter has four propellers (hence the name)

pointing upwards to the sky, each attached to its

own brushless DC motor at one of the four corners of

(usually) a square frame. Two motors spin clockwise, two

anticlockwise, to minimise angular momentum of the

quadcopter in fl ight.

Each motor is driven independently by an electronic

speed controller (ESC). The motors themselves have three

sets of coils (phases), and the ESCs convert a pulse-width-

modulation (PWM) control signal from software/hardware

to the three phase high-current output to drive the motors

at a speed determined by the control signal.

The power for the ESCs and everything else on the

system comes from a Lithium Polymer battery (LiPo) rated

at 12V, 3300mA with peak surge current of 100A – herein

lies the power!

Understanding
quadcopters...

aqx

aqzaq ฀

ag

ag = gravitational acceleration
aq = quadcopter acceleration
aqx

aqy

฀ = angle of tilt derived from
 accel + gyro

}= aq (reorientated to Earth’s axes)

aqx = tan ฀
aqy

for horizontal fl ight
aqz = g =>
horizontal accel aqx = g + a

Above How sensors
in the quadcopter
point of view are
converted to the
Earth (horizontal/
vertical) viewpoint
to provide
horizontal motion

Propulsion Here we’re seeing
the force from the propellers

Vectors Propeller force relative to
Earth’s axis (horizontal / vertical)

Gravity This term denotes the
force of gravity

Angle This is the angle of tilt as
defi ned by the quads sensors

PROGRAM A RASPBERRY PI QUADCOPTER

143

144

trigonometry and knowledge of the tilt angles in pitch and roll

axes of the quadcopter with respect to the Earth.

Angles
Both the accelerometer and gyro can provide this angle

information, but both have fl aws.

The accelerometer output can be used to calculate the angle

by using the Euler algorithm. However, the accelerometer output

is plagued by noise from the motors/propellers, meaning a single

reading can be hugely inaccurate; on the plus side, the average

reading remains accurate over time.

In contrast, the gyro output does not suffer from the noise,

but since it is the angular speed being measured, it needs to be

integrated over time to fi nd the absolute angle of the quadcopter

in comparison to the horizon. Rounding errors in the integration

lead to ever increasing errors over time, ultimately curtailing the

maximum length of a fl ight.

Filter
Although independently they are both fl awed, they can be

merged mathematically such that each compensates for the

fl aws in the other, resulting in a noise-free, long-term accurate

reading. There are many versions of these mathematical noise/

drift fi lters. The best common one is by Kalman; the one we’ve

chosen is slightly less accurate, but easier to understand and

therefore to code: the complementary fi lter.

Now with an accurate angle in hand, it’s possible to convert

accelerometer sensor data to inputs relative to the Earth’s axes

and work out how fast the quadcopter is moving up, down, left,

right and forwards and backwards compared to the targets that

have been set.

PIDs
So we now have a target for what we want the quadcopter to

do, and an input for what it’s doing, and some motors to close

the gap between the two; all we need now is a way to join these

together. A direct mathematical algorithm is nigh on impossible

– accurate weight of the quadcopter, power per rotation of each

blade, weight imbalance etc would need to be incorporated

into the equation. And yet none of these factors is stable:

during fl ights (and crashes!), blades get damaged, batteries

move in the frame, grass/mud/moisture changes the weight

of the ’copter, humidity and altitude would need to accounted

for. Hopefully it’s clear this approach simply won’t fl y.

Radio
Control

Commands

Pitch/Roll
Angle

PID
Target

Complementary
Filter

Esc

gyro(z)

฀accel(z)฀t

฀gyro(z)฀t

฀accel(x&y)฀t

฀gyro(x&y)฀t

gyro(x&y)

accel +Euler

Esc

Esc

Esc

C
om

m
an

d
 In

terp
reter

M
ixer

Yaw Angle

PID
Target

Vertical
Speed

PID
Target

Autonomous
Control

Commands

+ + +

+

+

- - -

-

-

The horizontal speed PID takes
movement commands and feedback
from integrated gyro sensors to defi ne
the desired tilt and angle to achieve
the required speed

The angle PID takes the desired tilt
angle from the horizontal speed PID
and feedback from the gyro and the
accelerometer combined to produce
the tilt angle feedback. This results in
the required angular speed

The vertical speed PID directly
controls the desired rate of climb
or descent with feedback from
integrating Z-axis accelerometer data

Commands from the radio-control
or programmed route are processed
and converted into a set of desired
movements in the X, Y and Z axes

The angular speed PID takes the
required angle PID out, with feedback
from the gyro to apply power to the
motors. This produces the required tilt
and horizontal movement

The PID outputs are applied
appropriately to each propeller ESC
to effect the change defi ned by the
proceeding commands

The yaw PIDs are used to ensure the
quadcopter doesn’t rotate its Z-axis
in fl ight

Above PIDs connecting commands
and sensor feedback to produce an

output driving the propeller blade
(E)lectronic (S)peed (C)ontrollers

ELECTRONICS

145

Both the accelerometer and gyro can provide
the angle information, but both have flaws

Instead, an estimation method is used with feedback

from the sensors to fine-tune that estimate. Because the

estimation/feedback code loop spins at over 100 times

a second, this approach can react to ‘errors’ very quickly

indeed, and yet it knows nothing about all the factors which

it is compensating for – that’s all handled blindly by the

feedback; this is the PID algorithm.

It takes the target, subtracts the feedback input,

resulting in the error. The error is then processed via

a Proportional, Integral and a Differential algorithm to produce

the output.

Blender
The outputs are applied to each ESC in turn: the vertical speed

output is applied equally to all blades; the pitch rate output is

split 50/50 subtracting from the front blades and adding to the

back, producing the pitch. Roll is handled similarly. Yaw too is

handled in a similar way, but applied to diagonal blades which

spin in the same direction.

These ESC-specific outputs are then converted to a PWM

signal to feed to the hardware ESCs with the updated propeller/

motor speeds.

Code and reality
In this code, there are nine PIDs in total. In the horizontal plane,

for both the X and Y axes, the horizontal speed PID converts the

user-defined desired speed to required horizontal acceleration/

angle of tilt; the angles PID then converts this desired tilt angle to

desired tilt rate which the rotation speed PID converts to changes

in motors speeds fed to the front/back or left/right motors for

pitch/roll respectively

In the vertical direction, a single PID converts the desired rate

of ascent/descent to the acceleration output applied to each

plate equally.

Finally, prevention of yaw (like a spinning top) uses two PIDs

– one to set the desired angle of yaw, set to 0, and one to set the

yaw rotation speed. The output of these is fed to the diagonally

opposing motors which spin in the same direction.

The most critical of the nine are pitch/roll/yaw stability. These

ensure that whatever other requirements enforced by other

PIDs and external factors, the quadcopter is stable in achieving

those other targets; without this stability, the rest of the PIDs

cannot work. Pitch is controlled by relative speed differences

between the front and back propellers; roll by left and right

differences,yaw by clockwise/anticlockwise differences

PROGRAM A RASPBERRY PI QUADCOPTER

146

differences from the corresponding PIDs’ outputs. The net

outputs of all three PIDs are then applied to the appropriate

combination of motors’ PWM channels to set the individual

pulse widths.

With stability assured, some level of take-off, hover and

landing can be achieved using the vertical speed PID. Placing

the quadcopter on a horizontal surface, set the target to 0.5 m/s

and off she zooms into the air, while the stability PID ensures that

the horizontal attitude on take-off is maintained throughout the

short fl ight, hover and landing.

Up to this stage, the PIDs are independent. But what about

for horizontal movement target, and suppression of drifting in

the wind?

Taking the drift suppression fi rst, a quadcopter in a headwind

will drift backwards due to the force applied by the wind. To

compensate, it must tilt nose down at some angle so that some

of the propellers’ thrust is applied horizontally to counteract the

wind. In doing so, some of the power keeping the ’copter hovering

at a fi xed height is now battling the wind; unless the overall

power is increased, the ’copter will start descending.

Horizontal movement is more complex still. The target

is to move forwards at say 1 metre per second. Initially the

requirement is similar to the headwind compensation – nose

down plus increased power will apply a forward force leading

to forward acceleration. But once that horizontal speed

is attained, the quadcopter needs to level off to stop the

acceleration, but at the same time, friction in the air will slow

the movement. So there’s a dynamic tilting fore/aft to maintain

this stable forward velocity.

Both wind-drift suppression and controlled horizontal

movement use nested PIDs; the X and Y axes horizontal speed

PIDs’ outputs are used as the pitch and roll angle PIDs targets;

their output feeds the pitch and roll rate PIDs to ensure stability

while meeting those angular targets. The sensor feedback

ensures that as the desired horizontal speed is approached, the

horizontal speed PID errors shrink, reducing the targets for the

angular pitch PID, thus bringing the quadcopters nose back up to

horizontal again.

Hopefully it now becomes clearer why accurate angle

tracking is critical: in the nose-down, headwind example, the

A quadcopter in a
headwind will drift
backwards due to the
force applied by the wind

ELECTRONICS

147

input to the vertical speed PID from the sensors is reduced by

the cosine of the measured angle of ’copter tilt with respect to

the horizon.

Similarly, X and Y axis speed PID sensor inputs need

compensating by pitch and roll angles when comparing target

speeds against accelerometer readings.

Experimentation and tuning
While the code accurately refl ects everything we’ve described

here, there’s one critical set of steps which can only be

found through live testing; these are the PID gains. For each

PID running, there is an independent Proportional, Integral

and Differential gain that can only be found with estimation/

experimentation. The results for every quadcopter will be

different. Luckily there is a relatively safe way to proceed.

First, fi nd the PWM take-off speed: this is done by sitting

your quadcopter on the ground and slowly increasing the

PWM value until she starts looking light-footed – for your

expert, this was about the 1590us pulse width (or 1000us

+ 590us, as shown in the code).

Next, sorting out the stability PIDs – assuming your

quadcopter is square and its balance is roughly central,

then the result of pitch tuning also applies to yaw

tuning. For pitch tuning, disable two diagonally opposed

motors and rest these on a surface – the quadcopter sits

horizontal in between. Power up the dangling motors’

PWM to just under take-off speed (1550us pulse width in

our expert’s case). Does the quad rock manically, wobble

in some pretence of control, self-right when nudged, or do

nothing? Tweak the P gain accordingly. Once P gain is good,

add a touch of I gain – this will ensure return to 0 as well as

stability. D gain is optional, but adds fi rmness and crisp

response. Tapping a D-gain stable quad is like knocking on

a table – it doesn’t move.

Vertical speed PID can be guesstimated. 1590us is taking

off; desired take-off speed is 0.5m/s so a P gain of 100 is

okay. No I or D gain needed.

With that a real take-off, hover and landing are safe, which

is good as these are the only way to tune the directional PIDs.

Just be cautious here – excessive gains lead to quadcopters

slamming into walls or performing somersaults in mid-air

before powering themselves into the ground. Best executed

outside in a large open fi eld/garden/park where the ground is

soft after overnight rain!

There isn’t a shortcut to this, so just accept there will be

crashes and damage and enjoy the carnage as best you can!

Assuming all the above has gone to plan, then you have a

quadcopter that takes off, hovers and lands even in breezy

conditions. Next step is to add a remote control, but that’s for

another article…

CCW

Front

Back

Left

Right

CCW

CW

CW

X

Y

Z

Propellers The propellers are set
diagonally to the x, y axes, and rotate as shown
to reduce yaw (rotation about the z-axis)

Orientation The overall orientation of the
quadcopter depicting front, back, left and right
in relation to the sensor and propeller layouts

Sensors The quadcopters’
sensors report data according to
these x, y and z axes

Above The
orientation of
the quadcopter
compared to the
direction of travel,
the rotation of the
propellers and
the axes used in
the code

PROGRAM A RASPBERRY PI QUADCOPTER

Get the inside story on how to replicate the greatest
Raspberry Pi hardware hacks

20 RASPBERRY PI HACKING PROJECTS

Build your own
games console

148

Activate
Project Jarvis

Simulate a
spaceship launch

Reinvent a
classic camera

149

Retrofi t a
NES console

Build an Android-
powered TV

Play an AR light
gun game

Create a robot
alarm clock

Turn your Pi into
a telephone

Upcycle an
old radio

There are now over fi ve million Raspberry Pi models out in

the wild, and some of the things that you, the Raspberry

Pi community, have made with them truly are wild. From

elegantly crafted scripts that chain together a series of web

services to homebrew Rube Goldberg machines, they are as

creative as they are diverse. And through the crowd of new

projects bubbling up online every day, if there’s one word that’s

guaranteed to get everyone’s attention then it’s the word ‘hack’.

But what exactly is a hack? Well, for the purposes of this

feature, we decided that a hack has to have some sort of

hardware base. It’s the kind of project where you take one

device and, with a little Raspberry Pi magic, transform it into

something wholly new and original. These are the projects

that get us excited and make us want to learn more about

electronics, engineering and programming.

Over the next few pages we’re going to introduce you to

some of the greatest Raspberry Pi hacks we’ve discovered.

Projects where vintage hardware has been torn apart and

the components repurposed into something amazing, or

where the hardware has been puzzled over, fi ddled with,

and brought back to life after years spent in a garage. These

hacks inspire us, with each maker striking the right balance

between passion, skill and virtuosity, and we hope they

inspire you too. Read on as we hear how you can launch a

satellite from a bedroom spaceship, transform an analogue

camera into a digital one, make a classic Apple Pi and more.

150

Stuart Johnson is bringing a classic GPO 746 handset

back to life, and while the project isn’t yet complete,

he has finished the lion’s share of it.

“I took out the main circuit board inside the phone

and squeezed the Raspberry Pi in there,” says Stuart.

“I was then faced with two challenges – the biggest

one was getting the bell to ring. I found a solution by

raising the voltage to 19 volts and dropping it down to

5 for the Ras Pi using a very small DC-DC converter

(the OKI-78SR), with the rest then being used for the

bell. I was surprised by how well it worked.

“The bell is using one of the I/O ports, and there’s an

available C# library (raspberry-sharp-io) which lets

you monitor and control those ports. So I linked one of

the I/Os to the pulse dial and connected

another to a relay using

transistors. Then with the

software I put in a timer to

measure the pulse clicks. I

managed to write some

code to time those

pulse clicks and

determine the

n u m b e r

dialled.”

Remember the car computer that we made

earlier? Well Derek Knagg already beat us to it, and

he’s embedded the display in his dashboard and

extended the setup to include screens for the rear

passenger seats too.

“I removed the DVD player, which was a standard

Ford head unit,” explains Derek, “and then

purchased a head unit from Xtrons. It’s designed

for the Ford Focus so it was a straight swap. The

Xtrons radio has an S-Video input and that goes into

the radio, so the Raspberry Pi displays as Auxiliary

Input. There’s two Auxiliary Outputs on the radio,

so the Raspberry Pi sends a video to the main radio

which then sends it back out to the screens in the

passenger seats. What I’ve done

is put in a device – like a VGA

adaptor: it takes one input and

puts seven out – that gives me

the ability to have the Raspberry

Pi running to the back screens

on their own, so the radio can

then control itself. I can have

my kids watching movies at

the back with the Raspberry Pi

using an audio splitter (they’ve

got headphones on), and we can

be at the front using the normal

radio controls, like the satnav for

example. So that works well.”

Revive a ringing phone with C# circuit
wizardry and voltage manipulation

Power up a regular point-and-shoot DSLR camera

Pi Telephone

Camera Pi

Dave Hunt is well known to Raspberry Pi

fans, and here he’s back with his Camera Pi.

“I needed to transmit photos to an iPad

as they were taken,” explains Dave, “but the

commercial solutions were £500. I had a broken

battery grip big enough to fit my Raspberry Pi

and a battery, so it went from there.

“The battery grip holds two batteries. Once

I’d stripped out the battery compartment, I set

about filing down all the mounting holes inside

the grip so I could get the Raspberry Pi inside.

“The next task was to fit

a camera battery and DC-DC

converter inside. I was able to use part of the

removed internals of the grip, and before long

I had a slot to insert a camera battery into. It’s

capable of powering the Pi for about four hours.

“Making it wireless was a case of plugging

in a USB Wi-Fi adapter. A few lines of Perl later

and I was able to poll the camera with gphoto2,

pull the new files off and send them via FTP to

ShutterSnitch on my iPad.”

Maker Profile

Derek Knaggs

Managing
director

Derek Knaggs runs

Flamelily IT, an IT

supply and support

company, and is

studying Computing

at the University

of Worcester.

Find out more:

fl amelily.co.uk

Maker Profile

Stuart
Johnson

Managing
director

Stuart runs

Logic Ethos, an

IT company in

Southampton

providing network

services and cloud

computing help

to developers.

Find out more:

logicethos.com

Maker Profile

Dave Hunt

Photographer
and maker

David has been

making projects for

the Raspberry Pi

since the early days.

Find out more:

davidhunt.ie

Above In this setup, the Pi is one of
the inputs for the Xtrons head unit

Above
Read up on the full build

process and check out Dave’s
video at bit.ly/1BxEMbC

Ours was good, but Derek Knaggs really
has built the real deal

Car Computer

20 RASPBERRY PI HACKING PROJECTS

151

Now you’re playing with power. Raspberry Pi power to
be exact, situated inside an old game console

RetroNES

“It all started when my wife asked me what I

wanted for Christmas”, said Chris over email. “I

had absolutely no idea but I had been wanting to

mess around with a Raspberry Pi since it came

out, so she got me a starter kit.

“While waiting for Christmas I started

narrowing down ideas and found the RetroPi

project. I thought that I would just install

that, load some ROMs and call it good, then

I remembered that I had some old NES and

SNES controllers in storage. I went to get them

and found my old childhood NES console along

with the controllers. Once I got the NES back in

the house and started looking at it, I found that

almost all of the internals were damaged due

to insects and moisture. All of the connectors

were corroded and some of the boards had

Above Everything is packed inside the original
case, without needing to open it up to use it

traces that were peeling. That is when I

decided that I would use the Raspberry Pi to

‘resurrect’ the NES.”

Chris completely gutted the case and

replaced the insides with a Raspberry Pi,

hooking up I/O ports to the original connectors

for the controllers and the AV cables and such.

What’s it like taking on a project with one of the

most revered consoles in videogame history?

“It was a little intimidating at fi rst as I wanted

to make sure that this project looked and felt

like an NES but with more fl exibility. The biggest

issue I ran into was that I wanted it to be able

to work like an NES, meaning that if someone

wants to play a game that they just turn it on,

select a game and then they are playing. When

they are fi nished all they have to do is press the

power button to turn the console off. We can’t

do that easily with a Raspberry Pi since there is

no ATX-style power switch. I was able to solve

this issue with a Mausberry Circuit and a Python

script. When the power button is pressed it

communicates with the Pi via a GPIO connection

and it runs the shutdown command. Once the Pi

is shut down, the circuit cuts the power to the Pi.”

The fi nal product works great, with Chris

reporting he can play on Atari, Sega and

Nintendo games just fi ne. He’s now looking to

upgrade it with a Raspberry Pi 2 and increase

the number of games he can play.

M
a

k
e

r
P

ro
fi

le

Chris Crowder
Programmer and database administrator

Working in the car industry, Chris develops

manufacturing systems for production floor

systems using .Net and SQL. In his down time, he

likes to play videogames and tabletop games, but

was previously limited to his PC for the former.

Find out more: imgur.com/a/KPi2n?gallery

Left It’s difficult to see,
but there are some difference to this
NES compared to an original

Refi tting a NES
Do you fancy taking on the challenge of

bringing your old console back to gloriously

pixelated life? Thought so. In that case,

you’ll be needing this – here’s a list of the

equipment that Chris used to repair and

revive his childhood NES console:

• A broken NES console – please don’t do

this to a working console

• Replacement NES Door

• Canakit Starter B+ – soon to be replaced

with a Raspberry Pi 2

• Panel Mount Ethernet Cable

• Panel Mount HDMI Cable

• Panel Mount USB Cable

• USB A Male Connectors 10pk

• SNES USB Controllers

• Anker 13000 mAh 3 watt Battery – this is

for when there is no power outlet nearby

or you want to be portable

• Mausberry Circuit – shutdown circuit

that uses your own switch, USB

• LEGO – to hold the Mausberry Circuit

• Gorilla Glue

• Blue 3-volt LED – the original NES LED

was 12 volts, plus all of the other items in

Chris’ entertainment console are blue

It was a little intimidating at fi rst
as I wanted to make sure that
this project looked and felt like
an NES

152

Astronaut training begins
early in Jeff Highsmith’s

home, with his sons running
launches from their home-

made Mission Control

Mission
Control Desk

Jeff Highsmith is probably the best Dad in

the world. Not content to just build his son a

desk for his room, he modifi ed it so that space

adventures can start with the push of a button.

“My eldest son was starting kindergarten and

he needed a desk to do his homework on,” Jeff

tells us, “and since I like to build stuff I thought

I would make him a desk rather than buy one,

and I was thinking, ‘What would make a really

awesome desk?’ Well, having lots of buttons and

switches like a mission control desk! Carpentry-

wise it was pretty simple to build.

“The Raspberry Pi is up in the front-centre

behind a piece of fl exiglass, next to the Arduino

that takes care of reading the inputs. The Pi

handles all the sounds and the logic – the

gameplay aspect. That was my fi rst Python

experience and it was pretty good.

“The desk has got several modular panels

and each has a different function. So in the

real mission control at NASA there’s a desk

that controls the retro stage, and for this desk I

made a retro booster panel and put a bunch of

rocket noises on it. There’s a capcom (capsule

communicator) panel, so you put on a little

Above These reflect the real stages of a NASA
mission and play authentic recorded sounds

headset and you can talk to the astronaut that is

in the spaceship in the other room.

“There are a couple of panels that have

numerical displays: one reads out some attitude

numbers, like x, y and z in space, and there’s

one that monitors the astronauts’ vital signs

(supposedly). There’s one that does mechanical

spaceship noises, like pumps, heating elements,

buzzing noises, fans etc. I wanted it to be like

you’re turning things on and off, not just pushing

a button that plays a sound – that’s why I have

the toggle switches as well as push buttons.

There’s a spot for the iPad in the middle too – you

can watch videos of rocket launches.

“There are homages to actual NASA

emergencies, like the stirring of the oxygen

tanks that led to the Apollo 13 explosion. I have

a switch that makes it sound like it’s stirring

the tanks, then it makes an explosion sound

and plays the audio from the astronauts

talking: ‘Houston – we have a problem’. There’s

a sequence panel too that has the different

mission stages on it and each of those plays a

real NASA soundbite, all the way from the launch

to the landing on the Moon to the splashdown.”

M
a

k
e

r
P

ro
fi

le Jeff Highsmith
Tinkerer extraordinaire

Jeff Highsmith loves to make new and novel

things. The medium isn’t important, and he

enjoys scrounging for materials and making

do with what’s at hand.

Find out more: jeffhighsmith.com

Above
The Mission Control
desk groups the
various functions
into ‘station’ panels

Astrocarpentry
The panels are assembled from bare
components. Jeff ordered the switches and
then designed the panel layout and labels
on his computer, printing them on inkjet
transparency – clear acetate – and then
gluing those onto some fi breboard that
he had spray-painted a metallic grey. He
estimates that the whole budget was $700.

Right Outside of
playtime, this is
just an ordinary

homework desk.
Almost

153

After successfully accomplishing his desk
mission, Jeff Highsmith set his sights higher

Spaceship Bedroom

Mission control was but one small

step. Next was the mission itself,

as Jeff explains: “So my boys would

hit the buttons on the desk and go

through all those mission stages and

run around with their toy rockets, but

having the actual spaceship, I thought,

would be cool. The spaceship has

some panels similar to the desk, but

it also has a small screen in there that

goes to a video camera in the cargo

bay. There’s a motorised hatch on the

side that you can open up by fl icking

a switch, and then the camera shows

you a cargo bay with a robot arm

inside it. You can’t see the cargo bay

when you’re inside because you’re

laying on your back, but looking at the

screen you can see it and the controls

are in front of you. It really feels quite

fun – I’ve got a little toy Hubble space

telescope in there and I hung a piece of

fi shing line from the ceiling with a little

bit of metal on it, and then I’ve got a

magnet in the space telescope. So you

take the telescope from the cargo bay

with the arm, move it over and snap

it onto the string that hangs from the

ceiling – we call that orbit. Once it’s in

orbit you can pull the arm back in the

cargo bay, close the hatch and your

mission is complete, you can return to

Earth. And then there’s the inevitable

mission to go and fi x the Hubble…

Jeff’s going to upgrade this

awesome setup further. “Eventually,”

he says, “I’ve got some ceiling satellites

planned, so I’ll have them orbiting a

track in one of the bedrooms and the

iPad can monitor the different sensors

on the satellites. The track will be a

thin metal rod under the ceiling in an

ellipse, and then each satellite will

have a tiny wheel extending from the

top of it, which has a very small gear

motor on it, so it’ll hang from the track

on that wheel. The idea is that the kids

can build satellites out of Lego, put

them in the cargo bay, then winch them

up into orbit.”

There are many schools of thought regarding your

sleeping environment to help aid better and more

restful sleep. No electronics in the bedroom, try and

relax before going to sleep, take a cool or hot shower

depending on the time of the year. Some people

require pitch darkness to get a good night’s sleep

though, while others like to wake up when the sun

rises as part of a natural body reaction. Emil likes to

do both of these things with his Raspberry Pi that

automatically shuts and opens his blinds at specifi c

times of day:

“7:30: Press up button, wait 10 seconds (I have

smaller windows on the bottom and bigger above

them, so after these 10 seconds, shutters are going to

be open only on the bottom ones), press stop button.

8:00: Press up button. 22:00: Press down button.”

Unfortunately, it means he has some electronics in

his bedroom, but whatever works for him.

“In my spare time I like messing around with older

computer hardware that I come across. Originally

I found the need for a terminal to connect over

SSH to a server that I was using for an internship. It

was more effi cient than devoting a more powerful

machine to it. I took a server to school with me to

continue working for the same company as I studied.

I had a Raspberry Pi also sitting around and I

started hooking it up to a monitor from an Apple IIc

that I found at my university’s electronics surplus.

This became valuable when I started having to log in

to a school server over SSH to compile assignments

for my programming classes. Eventually, I found a

keyboard from a Macintosh 512k and made it work

over USB with a microcontroller and a custom wired

key matrix, and I paired it with the monitor and Pi.”

Nearly a Rube Goldberg machine, we
hope it plays ‘Powerhouse’ when used

Automatic Roller

Maker Profile

Austen
Barker

Engineering
student

A Californian

student that has

a habit of messing

around with any old

computer hardware

that he can get his

hands on.

Find out more:

imgur.com/a/

vOsML

Maker Profile

Emil
Jaworski

Maker

Finding himself in a

rented apartment

for a few months,

Emil has decided to

upgrade it himself.

Find out more:

imgur.com/a/

OYdPo

We’ve had lots of Raspberry Pi over the
years, but what about Apple Pi?

RasPi Terminal

Above You can see the robot
arm reaching out of the cargo

bay door to the left

20 RASPBERRY PI HACKING PROJECTS

Having an actual
spaceship, I thought,
would be cool

154

Chasing your alarm clock may sound like a
nightmare to some, but here it is a reality

Alarm Clock Robot

When we talked about Rolly the alarm clock

robot around the offi ce, most people burst

forth with a string of expletives not fi t for print.

It’s a delightfully evil invention – an alarm clock

you need to work for to turn off. It sounds like a

great invention, getting people who have trouble

waking up to actually get up out of bed and start

the morning.

Like any other Dexter Industries robot, it runs

on BrickPi, the LEGO Mindstorms adapter for

the Raspberry Pi that enables it to interface with

LEGO kits via programming.

“Today almost everyone uses their phone as

an alarm clock, which has a range of benefi ts,”

the website explains. “Phones are easy to

set, easy to adjust, play custom songs and

can even sense when is the best time to wake

you up. The problem is, unless your phone is

across the room, we use our phones so much

we can literally use them in our sleep. Why not

build a robot that is able to do all these things,

“There’s plenty of room for additional electronics

inside the Hisense LED smart TV,” begins Tony

Hoang. “There’s a large flat area for electronic parts

in the centre of the TV where I placed my Raspberry

Pi. The dual down-facing speakers were quite loud,

so I removed one and replaced it with a USB hub. The

back panel was mostly flat, so finding a spot for the

LAN port and HDMI output wasn’t too hard.

“The Raspberry Pi is powered by the logic board

of the Hisense. There were the obvious 5v-500 mAh

outputs from the 2x USB 2.0 ports, which I tried but

I found out that the logic board shuts off the power

to these ports when the TV turns off. To keep the

Raspberry Pi turned on, I probed the logic board with

a multimeter and found one from an unused GPIO.”

Sometimes the simplest hacks can
open up whole worlds of possibility

PiFM Radio

When studying at Imperial College London,

Oskar Weigl and Oliver Mattos turned the Pi

into an FM radio by connecting a wire (antenna)

to GPIO 4 and using a custom Python module.

“There is a clock generation module in the

hardware of the Raspberry Pi chip that lets

you output a clock signal at a user-selected

frequency,” Oskar explains. “We used the DMA

controller to send commands to the clock

module to change the frequency and achieve

frequency modulation. We had to overclock

the clock generation module by a factor of 20.

The sound is 14 bits per sample, enhanced to

a higher number using delta sigma modulation

and the range is at least 50 metres.”

M
a

k
e

r
P

ro
fi

le Taryn Sullivan
Advisor

Taryn is an international businesswoman. As well

as flying between Shanghai and DC for her own

engineering business, she now works with Dexter

Industries to promote robotics education.

Maker Profile

Tony Hoang

Graduate
researcher

Tony Hoang is a PhD

student studying

computational

biophysics and

single molecule

research at SUNY-

Albany in Albany.

Find out more:
linkedin.com/in/
tonyphoang

Maker Profile

Oskar Weigl

Electronics
engineer

Oskar is an

electronics

professional and

hobbyist, as well as

an avid forward

and reverse

engineer.

Find out more:
bit.ly/1om6BQE

Find out more: bit.ly/1BTYljv

Is your smart TV not smart enough?
Open the case and put a Pi inside

Ras Pi Smart TV

but won’t stop till you get up and start moving!

Our robot will be able to easily move randomly

around the room over any surface, playing a

custom alarm tone.

“In order to set the alarm, simply link the

program on the BrickPi to your Google account

and it will search events with the title ‘wake1’

and automatically start the alarm at the event’s

time. This means the alarm time can very easily

be adjusted using any device that can access

your Google Calender.”

Robotics education
There are many ways to get kids excited

with coding, like making games in Scratch,

modifying Minecraft and teaching via

robotics. The latter is a new concept but

still has the same merits – a physical

creation that children are excited about and

react to the programming they’ve done on

it. Visible results and instant gratifi cation is

a great way to get imaginations fi red up.

20 RASPBERRY PI HACKING PROJECTS

155

Go all the way and totally rebuild Android TV!

Pirate TV

The perfect companion to the Smart TV

hack, Donald Derek Haddad’s project is a

custom TV interface you can make yourself.

“Pirate TV is a smart television

application that runs on the Raspberry

Pi with the Raspbian OS,” Donald tells

us. “It’s built with open source tools and

shipped with a free remote controller,

your mobile device. At its core lies a Node.

js application that runs a web server with

Express.js/Socket.io to handle users

Walking around Maker Faire, you see some

weird and wonderful things. If you’d been

present at the Jerusalem Maker Faire you

may have seen people wield a giant toy gun to

shoot down virtual asteroids in Avishay’s AR

motion game Astrogun.

“In the Astrogun lies a Raspberry Pi

computer,” Avishay explains. “An IMU card

connected to it (Sparkfun’s MPU-9150

breakout board) gives it the ability to sense

the unit’s orientation. The Pi is then able to

draw the elements seen from that angle.

Upcycling is a great concept: recycling a

product using new technology to make

it relevant in the modern world. While

standard analogue radio isn’t dead yet, its

nice to have options when listening to music.

This is where Tony’s idea came in:

“I’d been working on a Raspberry Pi to play

music streams through my stereo. Once this

was running I integrated the Raspberry Pi into

an old radio named a Pye! With a background

in woodwork and engineering this seemed

like the perfect project.”

requests from the remote and trigger shell

scripts. The TV user interface is rendered

on a Chromium instance in kiosk mode.

Videos are streamed from YouTube or other

channels played on OMXPlayer, and cached

including 1080P HD content. This project is

a work in progress and it’s not going to be

able to tap into a lot of the content, which

makes a Google (now Android) TV or other

commercial platforms so valuable.” Check

out Derek’s tutorial: bit.ly/1l6YKpj.

When the player moves, the graphics move,

giving the ‘object in the room’ sense.”

Why the Raspberry Pi? It was due to time,

according to Avishay: “I had a short time to

bring it to a working thing, so I had to pick a

platform that was capable of the task and

easy to use. The RPi fi ts that criteria. I used

many software components designed for the

RPi or tested on it – the Pi3D and RTIMULib.

The combination of Pi as a hardware platform

and Python as a programming language is

the fastest way to materialise ideas.”

An augmented reality light gun game

Old meets new in this modifi ed radio

Astrogun

Pye Radio

Maker Profile

Tony Flynn

Senior embedded
systems design
engineer

Find out more:

bit.ly/19zrgPl

Maker Profile

Donald Derek
Haddad

Software
engineer

Donald is an open

source hacker.

Find out more:

donaldderek.com

Maker Profile

Avishay
Orpaz

Electronics
engineer

Find out more:

bit.ly/1AYPSqg

Below Clever software
gives you a window onto the

Astrogun gameworld

However, this project wasn’t a walk in

the park for Tony: “The hardest part of the

conversion is linking the tuner knob to the

rotary encoder. For this radio I used the

spring from an old biro as a drive train to link

the tuner knob spindle to the rotary encoder

through 90 degrees.”

Did Tony have qualms about heavily

modifying such a classic design? “None

whatsoever! Some people don’t like the

modern style now stamped on this old radio,

I think it’s a new era, new look!”

Right
The body
has also been
cleaned and repainted

20 RASPBERRY PI HACKING PROJECTS

156

Classic aesthetics with modern
convenience, this old-school

camera has been upgraded
with a Raspberry Pi

Digital
Camera

Conversion

Old cameras have a very specifi c design

aesthetic that it seems has been lost to

time, although nostalgia for them is still very

strong in certain circles. Unfortunately, while

nostalgia, desire and working cameras still

exist in the 21st Century, usable fi lm is quickly

dwindling in supply. So if you like the aesthetic

and aren’t too bothered about using the old

photo process, why not upgrade the insides

with more modern technology?

“I wanted a suitable case for the Raspberry

Pi camera board,” Pete tells us, “and the Holga

seemed a perfect fi t. Most of the available

cases are either a bit ugly or suited more

towards stationary webcam-type applications.”

Why the Raspberry Pi, though?

“The Raspberry Pi is a maker’s dream –

it’s cheap and cheerful, and the community

that’s built up around the Pi makes a brilliant

resource when you’re stuck with a problem or

want to fi nd out more.”

The entire build doesn’t require a massive

amount of components either. As well as

Top-left The
camera of the
past, updated
for today

Left The Pi is
the perfect size
to fit inside the
camera case

the actual camera and Pi itself, Pete used a

Raspberry Pi camera board to actually take

photos, a Wi-Fi module for connecting to it

remotely, a battery and a switch for it, and

a few buttons and resistors to wire up the

camera’s control buttons to the Pi.

“It works better than I expected!” Pete said

about the quality of the fi nished product.

“Although it seems a bit daft to build a camera

that’s about as good as you’d get from a cheap

camera phone, it’s changed the way I take

pictures. By removing the instant replay – most

people seem to view the world through the

displays on their phones – I can concentrate on

taking the photo. Only seeing the pictures when

I’ve taken the camera home and downloaded

them to my PC adds a bit to the fi lm nostalgia

and I’m often surprised by the photos I’ve

taken. Plus I’ve received some nice feedback

about how the camera looks.”

This is only the fi rst iteration, and Pete has

plans to make the next build easier and also

use the original lens with the Pi camera.

Do it yourself
Version two of the project will result in a kit

that people can use to convert their own

cameras “that doesn’t require you to take

a Dremel to the insides of a Holga!”. He’s

not decided yet on whether to make a kit

that converts a Holga, or a kit that builds a

Holga-esque case around the Raspberry

Pi itself. Either way, the whole thing should

also have a better photo-taking capability,

which is the ultimate goal.

M
a

k
e

r
P

ro
fi

le

Pete Taylor
Web manager

Pete works for a charity and has always tinkered

with computers, ever since he got a hand-me-

down BBC computer. He likes that the Raspberry

Pi returns to a time when you could hack your own

computer without making an expensive mistake.

Find out more: bit.ly/1MKRASw

20 RASPBERRY PI HACKING PROJECTS

The Raspberry
Pi is a maker’s
dream – it’s cheap
and cheerful, and
the community
built around it is a
brilliant resource

157

Liberty Games loaded a Raspberry Pi into the side of

a pool table that enables people to make payments

via a Bitcoin app on their phone to release the balls.

“We did this with the Raspberry Pi 1”, Stuart tells

us. “We tried to install the entire Bitcoin client on

the Pi but it was struggling, and downloading the

whole blockchain caused issues too. It was going to

be connected to the Internet, so we offl oaded the

heavier work to a server able to handle the blockchain.

The server receives the Bitcoin payment and then

communicates to the Pi securely that the payment

has come in, and it syncs up the prices as well.

“We connected a PiFace via a breakout board

that’s monitoring on WebRCT for the go-ahead from

the server, and once it gets that, it sends the physical

voltage to the electrical ball release mechanism.”

At raisinggeeks.com, Ian Cole and his two sons

love a challenge. So the chance to repair a game

table gave them the perfect Raspberry Pi primer.

“We’ve taken an existing pinball machine

playfi eld,” says Ian, “and built a new game from

it. This required learning the underlying hardware

fi rst. Then we learned how to use the Raspberry Pi,

pygame for sound and text graphics, and omxplayer

for HD video, and we connected the software tools

with the hardware of the pinball machine.

“We built a MOSFET circuit on a breadboard

to test a single solenoid. When that worked, we

duplicated it onto a hand-soldered protoboard

and extended it to control the fi ve solenoids. The

Raspberry Pi handles graphics, audio, scoring rules,

saving scores, etc. One Arduino drives the lamp and

switch matrix, another drives the solenoids. The

three are connected with an I2C bus.”

Modern pool pros pay digitally by
scanning a QR code to insert Bitcoins

Ian Cole and his sons enter the high
score boards with Fireball HD

Light up your living room with a voice-controlled light show for a coffee table

Bitcoin Pool Table

Fireball Pinball

LED Voice-Controlled Coffee Table

Mikel found himself in a quandary: he

didn’t have a coffee table. However,

instead of just heading to Ikea and

picking up a LACK, he decided to

make one himself. Not just any coffee

table though, one that lit up using a

Raspberry Pi to control the sequence.

“I used the Raspberry Pi because it

was easy to work with and has a great

community. Whenever I run into an

issue, there is always documentation

on how to fi x it. I wanted to have

network support and do more complex

operations, like loading images, than

I could do just using an Arduino with

Ethernet. The combination of the

two really made development faster.

Now that Pi4J has added support for

the Raspberry Pi’s integrated SPI, I

am working on controlling the LEDs

directly, without the Arduino.”

Recently, Mikel added voice control

to it using Google Now. “After you say

a command to Google Now, Autovoice,

a plugin for the Android app Tasker,

intercepts the response back from

Google. If the response matches a

Tasker task, the task will be launched.

I have a few tasks set up to make web

service calls, basically calling a URL

with parameters. This URL connects

to a Java based web service I created,

running on my Raspberry Pi.”

Mikel also encourages users not to

use coasters, as drinks light up well

when the table is switched on.

Maker Profile

Stuart Kerr

Technical
director

Stuart Kerr is the

technical director

of Liberty Games,

which specialises in

classic table and bar

games. You might

have heard of some

of their hacks.

Find out more:

libertygames.co.uk

Maker Profile

Ian Cole

Maker and
geek raiser

Ian Cole is a keen

maker, hacker

and inventor, and

regularly blogs

about his family

projects with his two

sons. Their Fireball

project, for example,

grew out of an

innocent ‘Can you

make it playable?’

Find out more:

raisinggeeks.com

Maker Profile

Mikel Duke

Software
developer

Mikel loves

programming,

photography, biking

and hiking, and

sharing his projects.

Find out more:

bit.ly/1F0HDkW

Above The price of a game is displayed, in
Bitcoins, on the PiFace display module

20 RASPBERRY PI HACKING PROJECTS

158

The 1950s future today with your
voice-activated smart home
automation system

Project Jarvis

Home automation has been a thing for years

now, with a fair few intrepid engineers and

DIYers modifying their home. With wirelessly

controlled lights, heating, garage doors and

many other household items, it’s amazing what

some have achieved. Science fi ction has always

portrayed houses with advanced systems and

Mayur has been busy creating such a system.

“The major inspiration came from watching

the Iron Man movies, which is where the name

Jarvis comes from. I decided to build a simple

home automation system, however over the

many years and many reinstalls of Windows,

I lost my program. I built a new and improved

home automation system, which features an AI

assistant and more functionality, after I saw the

third Iron Man fi lm.”

While home automation is one part of the

project, convenience isn’t the only factor.

“The main function of the system is to

Left The Jarvis
interface is
gorgeous, but
you can control
the system from
anywhere using
your smartphone
or your voice

help save energy in homes,” Mayur tells us.

“Jarvis can read and monitor the electricity

usage per light or appliance and this lets the

AI perform certain tasks. These tasks are

determined by outside factors, like whether

or not a light should be switched on if there

is adequate natural light in the room. This is

a basic example but other factors infl uence

the determination of the AI, which has control

over the power to each light or appliance. The

data is logged throughout the month and the

system uses that information to achieve better

results the following month. This is smart

home automation.”

The Jarvis AI is a major part of it, and you can

talk to it. “He can control your home using voice

interaction and make basic decisions about

energy savings in a room. I have also recently

built a wall-mounted tablet system that links

to a local online grocery store. It uses voice

control to identify what products you need and

adds the items to a list until you specify the

delivery.”

With a year and a half of work on the project,

everything Mayur has completed works

reliably, but there are still more functions he

wants to add.

The voice
The Jarvis that this project is named after
is well-known for its snarky remarks and
tone of voice. Choosing an actual voice that
works though is a hard enough task without
going for a certain style, as Mayur explains:

“It’s been diffi cult trying to fi nd voices with
a good API and price but I have settled for a
free API which offers cloud conversion and
just sends an MP3 sound fi le back. It takes
longer but it ensures that the voice works
on all OSs.”

If you’re interested in having a go at creating
your own Jarvis-esque home automation
system then thankfully you’re in luck. You
can check out Joey Bernard’s extensive
three-part series (beginning on page 76 of
this very book) that explains how to set up
a digital assistant that uses Pyaudio and a
few voice recognition modules in order to
parse your spoken commands.

M
a

k
e

r
P

ro
fi

le

Mayur Singh
Computer systems engineering student

Located in South Africa, Mayur’s expertise is

in embedded systems and he is familiar with

microcontrollers and systems that enable

outside hardware interaction, such as the

Raspberry Pi and the Beaglebone Black.

Find out more: bit.ly/1Evlmci

Above Alarm
mode can only

be disabled with
the right finger or
the master code

20 RASPBERRY PI HACKING PROJECTS

The Raspberry
Pi is a maker’s
dream – it’s cheap
and cheerful, and
the community
built around it is a
brilliant resource

159

Love old arcade games?
With Ben Heck’s hack, you can play them all
on a single hand-built, hand-held console

Portable
Pi Arcade

Ben Heck has built two versions of the

Portable Pi Arcade. The fi rst was the original

Portable Raspberry Pi project (youtube.com/

watch?v=dUZjzQuTNX4), where he hacked the

Pi to reduce its size and opened up a USB game

controller to extract the circuits. With a new

assembly in place, he 3D-printed a custom-

designed case, put the new device together, and

booted up MAME (the Multiple Arcade Machine

Emulator) to play old-school games.

His recent revival of this earlier project was

even more home-made. For the Raspberry Pi

MAME portable gaming device (youtube.com/

watch?v=zrEj1aQRbpw), Ben made a circuit

board from scratch, fi tting all the components

into a new 3D-printed case that, rather than

resembling a Game Gear, looks pretty close to

a Game Boy.

We asked Ben to take us through the original

version of his project: “My fi rst portable Pi project

was a small, battery-powered unit for gaming,”

he begins. “It had a single USB port for Wi-Fi

or external storage and we featured it back on

season three of the show. The screen came from

a cheap NTSC LCD screen that Amazon sells

for use as a car’s backup camera. The buttons I

laser-cut myself and the case was 3D-printed.”

And in terms of physical modifi cations to the

Pi? “Mostly I removed the taller through-hole

components,” he replies, “and attached the

Teensy HID (used for controllers) directly to it. I

also moved the secondary USB port.”

As you can see above, the case is very well

made. “I did the initial layout in Adobe Illustrator,

for the laser-cut portions,” explains Ben, “then

transferred the whole design to Autodesk 123D

to create a 3D-printable fi le. Hand-writing

the buttons for the controls was the most

challenging part of this project. It was the

most time-intensive part and required a lot of

precision and attention to detail.”

Ben is no stranger to taking apart consoles

and controllers for his Pi hacks – but he also

makes one-handed accessibility controllers. “In

addition to all of the other projects and hacks,

we modify gaming controllers for people who

have diffi culty using existing ones,” Ben tells

us. “On the show we’ve featured a few of them

– Xbox One, PS4, even the Wii. Now we build

these controllers by request and they can be

ordered off my website, though we only do Xbox

360/Xbox One controllers as those use PCBs

throughout (instead of silk screen circuits like

the PS4). Recently I trained Felix (an assistant on

element14’s The Ben Heck Show) on how to do it,

so he’s been helping and working on them in his

spare time as well.”

Above Watch the video to see how Ben build
and tests the custom circuit board

Heck’s hacks
Pi Point and Shoot: A Raspberry Pi camera

module, PiTFT from Adafruit, PlayStation 3

controller battery and additional parts were

all made into a point-and-shoot camera.

Pi Retro Computer: A tribute to the BBC

Microcomputer from the 1980s, Ben

mounted a Raspberry Pi to a self-made

wooden case, HDMI port, on/off switch and

USB hub for an ‘old-school’ feel computer

and carrying case.

Handheld Pi Console: Ben hacked a

Raspberry Pi single board computer

to make it smaller. Combined with a

composite LCD wireless keyboard, lithium

battery power source and USB joystick, he

created a handheld gaming console.

M
a

k
e

r
P

ro
fi

le

Ben Heck is an online sensation and a pillar of

the maker community, putting out amazing

how-to videos for games console hacks and all

kinds of different Pi projects. He’s done it all on

The Ben Heck Show.

Master hacker, creator
of The Ben Heck Show

Ben Heck

Find out more: benheck.com

Above Install MAME and
you will never run out of

arcade games to play

20 RASPBERRY PI HACKING PROJECTS

* This of er entitles new UK Direct Debit subscribers to receive their � rst three issues for £5. After these issues, subscribers will then pay £25.15 every

six issues. Subscribers can cancel this subscription at any time. New subscriptions will start from the next available issue. Of er code ‘ZGGZINE‘ must

be quoted to receive this special subscriptions price. Direct Debit guarantee available on request. This of er will expire 31 August 2017.

** This is a US subscription of er. The USA issue rate is based on an annual subscription price of £65 for 13 issues, which is equivalent to $102 at the

time of writing compared with the newsstand price of $16.99 for 13 issues, being $220.87. Your subscription will start from the next available issue.

This of er expires 31 August 2017

Specia
l

tr
ia

l o
ffe

r

Exclusive offer for new

Enjoyed
this book?

Try
3 issues
for just

£ 5*

For amazing offers please visit
www.imaginesubs.co.uk/lud
Quote code ZGGZINE

Try three issues for £5 in the UK*
or just $7.85 per issue in the USA**
(saving 54% off the newsstand price)

The magazine for
the GNU generation
Written for you
Linux User is the only magazine dedicated to
advanced users, developers & IT professionals

In-depth guides & features
Written by grass-roots developers & industry experts

Jam-packed with Ras Pi
A Practical Raspberry Pi section brings you clever
tutorials, inspirational interviews and more

About
the
mag

Or telephone UK 0844 249 0282 overseas +44 (0) 1795 418 661

 subscribers to…

* Calls will cost 7p per minute plus your telephone company’s access charge

+

BUY YOUR COPY TODAY
Print edition available at www.imagineshop.co.uk

Digital edition available at www.greatdigitalmags.com

Also available…

A world of content at your � ngertips
Whether you love gaming, history,

animals, photography, Photoshop,

sci-� or anything in between, every

magazine and bookazine from

Imagine Publishing is packed with

expert advice and fascinating facts.

From the makers of

Discover this exciting and versatile programming language

with The Python Book. You’ll � nd a complete guide for new

programmers, great projects designed to build your knowledge,

and tips on how to use Python with the Raspberry Pi –

everything you need to master Python.

Python
The

